Yuming Liu, Jing Zhang, Yayue Hu, Zhigang Liu, Zhongyi Yang, Ran Jiao, Xueze Liu, Xiaohe Li, Feng Sang
{"title":"BI 1015550 Improves Silica-Induced Silicosis and LPS-Induced Acute Lung Injury in Mice.","authors":"Yuming Liu, Jing Zhang, Yayue Hu, Zhigang Liu, Zhongyi Yang, Ran Jiao, Xueze Liu, Xiaohe Li, Feng Sang","doi":"10.3390/molecules30061311","DOIUrl":null,"url":null,"abstract":"<p><p>Silicosis is an interstitial lung disease (ILD) caused by prolonged inhalation of silica particles. Acute lung injury (ALI) is a critical clinical syndrome involving bilateral lung infiltration and acute hypoxic respiratory failure. However, there is currently no effective treatment for these two diseases. Previous research has established that cyclic adenosine monophosphate (cAMP) is pivotal in the pathogenesis of silicosis and acute lung injury. Phosphodiesterase 4 (PDE4) is a hydrolase enzyme of cAMP, and BI 1015550, as an inhibitor of PDE4B, is expected to be a candidate drug for treating both. BI 1015550 has shown certain anti-inflammatory and anti-fibrotic properties in systemic sclerosis-associated interstitial lung disease (SSc-ILD) and idiopathic pulmonary fibrosis (IPF), but there is a lack of research on silicosis and acute lung injury. In this research, we successfully synthesized BI 1015550 autonomously and demonstrated that it could significantly improve lung fibrosis and inflammation in a silica-induced silicosis mouse model. Furthermore, we found that BI 1015550 could also alleviate lung inflammation in a Lipopolysaccharide (LPS)-induced acute lung injury mouse model. The mechanism of action may involve the regulation of cAMP-related signaling pathways.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946787/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061311","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicosis is an interstitial lung disease (ILD) caused by prolonged inhalation of silica particles. Acute lung injury (ALI) is a critical clinical syndrome involving bilateral lung infiltration and acute hypoxic respiratory failure. However, there is currently no effective treatment for these two diseases. Previous research has established that cyclic adenosine monophosphate (cAMP) is pivotal in the pathogenesis of silicosis and acute lung injury. Phosphodiesterase 4 (PDE4) is a hydrolase enzyme of cAMP, and BI 1015550, as an inhibitor of PDE4B, is expected to be a candidate drug for treating both. BI 1015550 has shown certain anti-inflammatory and anti-fibrotic properties in systemic sclerosis-associated interstitial lung disease (SSc-ILD) and idiopathic pulmonary fibrosis (IPF), but there is a lack of research on silicosis and acute lung injury. In this research, we successfully synthesized BI 1015550 autonomously and demonstrated that it could significantly improve lung fibrosis and inflammation in a silica-induced silicosis mouse model. Furthermore, we found that BI 1015550 could also alleviate lung inflammation in a Lipopolysaccharide (LPS)-induced acute lung injury mouse model. The mechanism of action may involve the regulation of cAMP-related signaling pathways.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.