Mechanistic Insights into Glycerol Oxidation to High-Value Chemicals via Metal-Based Catalysts.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Junqing Li, Ying Tu, Kelin He, Chao Chen, Lixing Liang, Chongze Ruan, Qitao Zhang
{"title":"Mechanistic Insights into Glycerol Oxidation to High-Value Chemicals via Metal-Based Catalysts.","authors":"Junqing Li, Ying Tu, Kelin He, Chao Chen, Lixing Liang, Chongze Ruan, Qitao Zhang","doi":"10.3390/molecules30061310","DOIUrl":null,"url":null,"abstract":"<p><p>The oxidation of glycerol offers a valuable route for producing high-value chemicals. This review provides an in-depth analysis of the current advancements and mechanistic insights into novel metal-based catalysts for glycerol oxidation. We discuss the catalytic roles of both precious metals (e.g., Pt, Pd, Au), noted for their high efficiency and selectivity, and cost-effective alternatives, such as Ni, Cu, and Fe. Bimetallic and metal oxide catalysts are highlighted, emphasizing synergistic effects that enhance catalytic performance. This review elucidates the key mechanism involving selective adsorption and oxidation, providing detailed insights from advanced spectroscopic and computational studies into the activation of glycerol and stabilization of key intermediates, including glyceraldehyde and dihydroxyacetone. Additionally, selective carbon-carbon bond cleavage to yield smaller, valuable molecules is addressed. Finally, we outline future research directions, emphasizing the development of innovative catalysts, deeper mechanistic understanding, and sustainable process scale-up, ultimately advancing efficient, selective, and environmentally friendly catalytic systems for glycerol valorization.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061310","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The oxidation of glycerol offers a valuable route for producing high-value chemicals. This review provides an in-depth analysis of the current advancements and mechanistic insights into novel metal-based catalysts for glycerol oxidation. We discuss the catalytic roles of both precious metals (e.g., Pt, Pd, Au), noted for their high efficiency and selectivity, and cost-effective alternatives, such as Ni, Cu, and Fe. Bimetallic and metal oxide catalysts are highlighted, emphasizing synergistic effects that enhance catalytic performance. This review elucidates the key mechanism involving selective adsorption and oxidation, providing detailed insights from advanced spectroscopic and computational studies into the activation of glycerol and stabilization of key intermediates, including glyceraldehyde and dihydroxyacetone. Additionally, selective carbon-carbon bond cleavage to yield smaller, valuable molecules is addressed. Finally, we outline future research directions, emphasizing the development of innovative catalysts, deeper mechanistic understanding, and sustainable process scale-up, ultimately advancing efficient, selective, and environmentally friendly catalytic systems for glycerol valorization.

金属基催化剂对甘油氧化生成高价值化学品的机理研究。
甘油的氧化为生产高价值化学品提供了一条有价值的途径。本文综述了甘油氧化的新型金属基催化剂的研究进展和机理。我们讨论了两种贵金属(如Pt, Pd, Au)的催化作用,以其高效率和选择性而闻名,以及具有成本效益的替代品,如Ni, Cu和Fe。双金属和金属氧化物催化剂的重点,强调协同效应,提高催化性能。这篇综述阐明了涉及选择性吸附和氧化的关键机制,从先进的光谱和计算研究中提供了对甘油活化和关键中间体(包括甘油醛和二羟基丙酮)稳定的详细见解。此外,选择性碳-碳键裂解产生更小,有价值的分子。最后,我们概述了未来的研究方向,强调创新催化剂的发展,更深入的机理理解,以及可持续的工艺规模,最终推进高效,选择性和环境友好的甘油增值催化体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信