Large Enhancement of the Luminescence Properties of an Eu(III) Dye upon Association with the DNA-CTMA Matrix.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Daniele Marinotto, Cosmina Andreea Marin, Ileana Rau, Alessia Colombo, Francesco Fagnani, Dominique Roberto, Claudia Dragonetti
{"title":"Large Enhancement of the Luminescence Properties of an Eu(III) Dye upon Association with the DNA-CTMA Matrix.","authors":"Daniele Marinotto, Cosmina Andreea Marin, Ileana Rau, Alessia Colombo, Francesco Fagnani, Dominique Roberto, Claudia Dragonetti","doi":"10.3390/molecules30061395","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the photophysical properties of thin films of an Eu<sup>3+</sup> dye, namely europium tetrakis(dibenzoylmethide) triethylammonium (EuD<sub>4</sub>TEA), within deoxyribonucleic acid (DNA) biopolymer functionalized with hexadecyltrimethylammonium chloride (CTMA) were extensively investigated and compared with those of thin films of the same dye embedded in more conventional polymers, like poly(methyl methacrylate) and polycarbonate. The new materials obtained have good optical properties, as shown by their absorption and emission spectra. Remarkably, a large enhancement in photoluminescence was observed upon the interaction of EuD<sub>4</sub>TEA with DNA-CTMA (2- and 17-fold increase in luminescence quantum yield with respect to PMMA and PC). Photophysical analyses suggest that the emission enhancement was mainly due to the increase in the sensitization efficiency (η<sub>sens</sub>) from the ligands to the Eu<sup>3+</sup> ion along with the suppression of the vibrational deactivation upon immobilization onto the DNA-CTMA matrix, as the concentration of the complex increased from 20 to 50%. These phenomena are primarily driven by the transformation of the Eu<sup>3+</sup> micro-environments, which are created by the interactions between complex ligands and the DNA-CTMA matrix.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061395","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the photophysical properties of thin films of an Eu3+ dye, namely europium tetrakis(dibenzoylmethide) triethylammonium (EuD4TEA), within deoxyribonucleic acid (DNA) biopolymer functionalized with hexadecyltrimethylammonium chloride (CTMA) were extensively investigated and compared with those of thin films of the same dye embedded in more conventional polymers, like poly(methyl methacrylate) and polycarbonate. The new materials obtained have good optical properties, as shown by their absorption and emission spectra. Remarkably, a large enhancement in photoluminescence was observed upon the interaction of EuD4TEA with DNA-CTMA (2- and 17-fold increase in luminescence quantum yield with respect to PMMA and PC). Photophysical analyses suggest that the emission enhancement was mainly due to the increase in the sensitization efficiency (ηsens) from the ligands to the Eu3+ ion along with the suppression of the vibrational deactivation upon immobilization onto the DNA-CTMA matrix, as the concentration of the complex increased from 20 to 50%. These phenomena are primarily driven by the transformation of the Eu3+ micro-environments, which are created by the interactions between complex ligands and the DNA-CTMA matrix.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信