{"title":"Multifaceted Functional Liposomes: Theranostic Potential of Liposomal Indocyanine Green and Doxorubicin for Enhanced Anticancer Efficacy and Imaging.","authors":"Wei-Ting Liao, Dao-Ming Chang, Meng-Xian Lin, Te-Sen Chou, Yi-Chung Tung, Jong-Kai Hsiao","doi":"10.3390/pharmaceutics17030344","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Liposomal drug formulations improve anticancer treatment efficacy and reduce toxicity by altering pharmacokinetics and biodistribution. Indocyanine Green (ICG), an FDA-approved near-infrared imaging agent, exhibits photosensitivity, photothermal effects, and potential ferroptosis induction, enhancing anticancer activity. Doxorubicin (DOX), widely used for treating breast, ovarian, and liver cancers, is limited by cardiotoxicity, requiring dosage control. Incorporating ICG and DOX into liposomes enables medical imaging, controlled drug release, reduced administration frequency, and fewer side effects. This study aims to develop liposomes encapsulating both ICG and DOX and evaluate their theranostic potential in in vitro and in vivo lung adenocarcinoma models. <b>Methods:</b> Liposomes containing ICG and DOX (Lipo-ICG/DOX) were synthesized using an active loading method and characterized for size (~140 nm), lipid, and drug concentrations. In vitro studies using A549 lung cancer cells assessed liposome uptake via fluorescence microscopy, while in vivo xenograft models evaluated therapeutic efficacy. <b>Results:</b> Lipo-ICG/DOX showed uptake in A549 cells, with ICG localizing in lysosomes and DOX in nuclei. Treatment reduced cell viability significantly by day three. In vivo imaging demonstrated the retention of liposomes in tumor sites, with ICG signals observed in the liver and intestines, indicating metabolic routes. When combined with 780 nm light exposure, liposomes slowed tumor growth over 12 days. Mechanistic studies revealed combined ferroptosis and apoptosis induction. <b>Conclusions:</b> Lipo-ICG/DOX demonstrates strong theranostic potential, integrating imaging and therapy for lung adenocarcinoma. This multifunctional formulation offers a promising strategy for improving cancer treatment efficacy while minimizing side effects.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944616/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17030344","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Liposomal drug formulations improve anticancer treatment efficacy and reduce toxicity by altering pharmacokinetics and biodistribution. Indocyanine Green (ICG), an FDA-approved near-infrared imaging agent, exhibits photosensitivity, photothermal effects, and potential ferroptosis induction, enhancing anticancer activity. Doxorubicin (DOX), widely used for treating breast, ovarian, and liver cancers, is limited by cardiotoxicity, requiring dosage control. Incorporating ICG and DOX into liposomes enables medical imaging, controlled drug release, reduced administration frequency, and fewer side effects. This study aims to develop liposomes encapsulating both ICG and DOX and evaluate their theranostic potential in in vitro and in vivo lung adenocarcinoma models. Methods: Liposomes containing ICG and DOX (Lipo-ICG/DOX) were synthesized using an active loading method and characterized for size (~140 nm), lipid, and drug concentrations. In vitro studies using A549 lung cancer cells assessed liposome uptake via fluorescence microscopy, while in vivo xenograft models evaluated therapeutic efficacy. Results: Lipo-ICG/DOX showed uptake in A549 cells, with ICG localizing in lysosomes and DOX in nuclei. Treatment reduced cell viability significantly by day three. In vivo imaging demonstrated the retention of liposomes in tumor sites, with ICG signals observed in the liver and intestines, indicating metabolic routes. When combined with 780 nm light exposure, liposomes slowed tumor growth over 12 days. Mechanistic studies revealed combined ferroptosis and apoptosis induction. Conclusions: Lipo-ICG/DOX demonstrates strong theranostic potential, integrating imaging and therapy for lung adenocarcinoma. This multifunctional formulation offers a promising strategy for improving cancer treatment efficacy while minimizing side effects.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.