Ana Y Rojas-Forero, Laura Y Hernández-Benítez, María L Ospina-Castro, Nataly J Galán-Freyle, John R Castro-Suarez, Maximiliano Méndez-López, Samuel P Hernández-Rivera, José A Centeno-Ortiz, Sandra P Romero-Nieto, Leonardo C Pacheco-Londoño
{"title":"Visible-Light Photocatalytic Activity of a ZnO-Loaded Isoreticular Metal-Organic Framework.","authors":"Ana Y Rojas-Forero, Laura Y Hernández-Benítez, María L Ospina-Castro, Nataly J Galán-Freyle, John R Castro-Suarez, Maximiliano Méndez-López, Samuel P Hernández-Rivera, José A Centeno-Ortiz, Sandra P Romero-Nieto, Leonardo C Pacheco-Londoño","doi":"10.3390/molecules30061375","DOIUrl":null,"url":null,"abstract":"<p><p>A hybrid material composed of IRMOF-3 and ZnO (IRMOF-3/ZnO) was synthesized to enhance photocatalytic methylene blue (MB) degradation under visible-light irradiation. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and diffuse-reflectance UV-Vis analyses confirmed the successful integration of ZnO into the IRMOF-3 framework. Compared with unmodified IRMOF-3, the hybrid demonstrated superior MB decomposition, as evidenced by faster reaction rate constants and shorter half-lives. Monitoring the MB absorbance at 670 nm (λ<sub>max</sub>) revealed more pronounced colorant removal when IRMOF-3/ZnO was exposed to a visible-light source. Diffuse-reflectance UV-Vis spectroscopy showed that IRMOF-3 has a band gap of 2.7 eV, whereas IRMOF-3/ZnO exhibits a slightly higher band gap of 2.8 eV. This modest shift, coupled with the strong interaction between the ZnO semiconductor and the MOF's amine functionalities, enabled two distinct energy-transfer pathways: intermolecular transfer from IRMOF-3 linkers (acting as visible-light antennas) to ZnO, and intramolecular transfer from Zn to IRMOF-3. Together, these pathways generated abundant free radicals for efficient dye degradation. Despite the necessity for careful synthesis protocols and control of operating conditions to preserve the MOF structure and optimize ZnO loading, the IRMOF-3/ZnO hybrid shows promise as a robust, cost-effective photocatalyst for water-pollutant remediation, taking advantage of the more abundant visible region of solar light.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944758/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061375","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A hybrid material composed of IRMOF-3 and ZnO (IRMOF-3/ZnO) was synthesized to enhance photocatalytic methylene blue (MB) degradation under visible-light irradiation. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and diffuse-reflectance UV-Vis analyses confirmed the successful integration of ZnO into the IRMOF-3 framework. Compared with unmodified IRMOF-3, the hybrid demonstrated superior MB decomposition, as evidenced by faster reaction rate constants and shorter half-lives. Monitoring the MB absorbance at 670 nm (λmax) revealed more pronounced colorant removal when IRMOF-3/ZnO was exposed to a visible-light source. Diffuse-reflectance UV-Vis spectroscopy showed that IRMOF-3 has a band gap of 2.7 eV, whereas IRMOF-3/ZnO exhibits a slightly higher band gap of 2.8 eV. This modest shift, coupled with the strong interaction between the ZnO semiconductor and the MOF's amine functionalities, enabled two distinct energy-transfer pathways: intermolecular transfer from IRMOF-3 linkers (acting as visible-light antennas) to ZnO, and intramolecular transfer from Zn to IRMOF-3. Together, these pathways generated abundant free radicals for efficient dye degradation. Despite the necessity for careful synthesis protocols and control of operating conditions to preserve the MOF structure and optimize ZnO loading, the IRMOF-3/ZnO hybrid shows promise as a robust, cost-effective photocatalyst for water-pollutant remediation, taking advantage of the more abundant visible region of solar light.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.