Haodong Chen, Caocheng Li, Yuefei Zhang, Wen Fang, Lian Zou, Ruan Chi
{"title":"Investigation of Solution Microstructure in Ferric Sulfate Coagulation-Assisted Precipitation of Fluoride Ions.","authors":"Haodong Chen, Caocheng Li, Yuefei Zhang, Wen Fang, Lian Zou, Ruan Chi","doi":"10.3390/molecules30061362","DOIUrl":null,"url":null,"abstract":"<p><p>The solution microstructure during the ferric sulfate-assisted precipitation of calcium fluoride was systematically investigated using molecular dynamics simulations and DFT methods. The microscopic behavior of various ions in a calcium fluoride box in the presence of ferric sulfate was simulated using MD. The corresponding hydrated cluster structures were extracted from the MD trajectory; then, the structure was optimized and the frequency was calculated at the B3LYP/6-311++G(d, p) level. The results show that no hydrated clusters had imaginary frequencies. Based on the topology, interaction region indicator, and surface electrostatic potential and binding energy analysis of the hydrated clusters, it was revealed that ferric ions are easily hydrolyzed to form hydrated clusters of ferric hydroxide at higher pH levels. The most stable of these structures is [Fe(OH)<sub>3</sub>·(H<sub>2</sub>O)<sub>2</sub>], which has the lowest binding energy. During the ferric sulfate coagulation process, calcium fluoride clusters and ferric hydroxide clusters could form binuclear clusters through electrostatic interaction. The two metal centers in the binuclear cluster, Ca and Fe, are connected by hydroxide ions.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061362","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The solution microstructure during the ferric sulfate-assisted precipitation of calcium fluoride was systematically investigated using molecular dynamics simulations and DFT methods. The microscopic behavior of various ions in a calcium fluoride box in the presence of ferric sulfate was simulated using MD. The corresponding hydrated cluster structures were extracted from the MD trajectory; then, the structure was optimized and the frequency was calculated at the B3LYP/6-311++G(d, p) level. The results show that no hydrated clusters had imaginary frequencies. Based on the topology, interaction region indicator, and surface electrostatic potential and binding energy analysis of the hydrated clusters, it was revealed that ferric ions are easily hydrolyzed to form hydrated clusters of ferric hydroxide at higher pH levels. The most stable of these structures is [Fe(OH)3·(H2O)2], which has the lowest binding energy. During the ferric sulfate coagulation process, calcium fluoride clusters and ferric hydroxide clusters could form binuclear clusters through electrostatic interaction. The two metal centers in the binuclear cluster, Ca and Fe, are connected by hydroxide ions.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.