Engineering CuZnOAl2O3 Catalyst for Enhancing CO2 Hydrogenation to Methanol.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Peixiang Shi, Jiahao Han, Yuhao Tian, Jingjing Wang, Yongkang Lv, Yanchun Li, Xinghua Zhang, Congming Li
{"title":"Engineering CuZnOAl<sub>2</sub>O<sub>3</sub> Catalyst for Enhancing CO<sub>2</sub> Hydrogenation to Methanol.","authors":"Peixiang Shi, Jiahao Han, Yuhao Tian, Jingjing Wang, Yongkang Lv, Yanchun Li, Xinghua Zhang, Congming Li","doi":"10.3390/molecules30061350","DOIUrl":null,"url":null,"abstract":"<p><p>The CuZnOAl<sub>2</sub>O<sub>3</sub> catalyst shows excellent activity and selectivity in the reaction of CO<sub>2</sub> hydrogenation to methanol as a consequence of its controllable physicochemical properties, which is expected to offer an efficient route to renewable energy. In this study, CuZnOAl<sub>2</sub>O<sub>3</sub> catalysts are engineered by a special pretreatment, constructing a carbonate structure on the surface of the catalyst. Compared to the unmodified catalyst, the optimized catalyst (CZA-H-C1) not only exhibits an improved methanol selectivity of 62.5% (250 °C and 3 MPa) but also retains a minimal degree of deactivation of 9.57% over a 100 h period. By characterizing the catalysts with XRD, TEM, XPS and in situ DRIFTS spectroscopy, it was found that the surface carbonate species on Cu-based catalysts could significantly enhance the reaction and shield the active sites. This study offers theoretical insights and practical strategies for the rational design and optimization of high-performance heterogeneous catalysts.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946585/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061350","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The CuZnOAl2O3 catalyst shows excellent activity and selectivity in the reaction of CO2 hydrogenation to methanol as a consequence of its controllable physicochemical properties, which is expected to offer an efficient route to renewable energy. In this study, CuZnOAl2O3 catalysts are engineered by a special pretreatment, constructing a carbonate structure on the surface of the catalyst. Compared to the unmodified catalyst, the optimized catalyst (CZA-H-C1) not only exhibits an improved methanol selectivity of 62.5% (250 °C and 3 MPa) but also retains a minimal degree of deactivation of 9.57% over a 100 h period. By characterizing the catalysts with XRD, TEM, XPS and in situ DRIFTS spectroscopy, it was found that the surface carbonate species on Cu-based catalysts could significantly enhance the reaction and shield the active sites. This study offers theoretical insights and practical strategies for the rational design and optimization of high-performance heterogeneous catalysts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信