{"title":"Engineering CuZnOAl<sub>2</sub>O<sub>3</sub> Catalyst for Enhancing CO<sub>2</sub> Hydrogenation to Methanol.","authors":"Peixiang Shi, Jiahao Han, Yuhao Tian, Jingjing Wang, Yongkang Lv, Yanchun Li, Xinghua Zhang, Congming Li","doi":"10.3390/molecules30061350","DOIUrl":null,"url":null,"abstract":"<p><p>The CuZnOAl<sub>2</sub>O<sub>3</sub> catalyst shows excellent activity and selectivity in the reaction of CO<sub>2</sub> hydrogenation to methanol as a consequence of its controllable physicochemical properties, which is expected to offer an efficient route to renewable energy. In this study, CuZnOAl<sub>2</sub>O<sub>3</sub> catalysts are engineered by a special pretreatment, constructing a carbonate structure on the surface of the catalyst. Compared to the unmodified catalyst, the optimized catalyst (CZA-H-C1) not only exhibits an improved methanol selectivity of 62.5% (250 °C and 3 MPa) but also retains a minimal degree of deactivation of 9.57% over a 100 h period. By characterizing the catalysts with XRD, TEM, XPS and in situ DRIFTS spectroscopy, it was found that the surface carbonate species on Cu-based catalysts could significantly enhance the reaction and shield the active sites. This study offers theoretical insights and practical strategies for the rational design and optimization of high-performance heterogeneous catalysts.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946585/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061350","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The CuZnOAl2O3 catalyst shows excellent activity and selectivity in the reaction of CO2 hydrogenation to methanol as a consequence of its controllable physicochemical properties, which is expected to offer an efficient route to renewable energy. In this study, CuZnOAl2O3 catalysts are engineered by a special pretreatment, constructing a carbonate structure on the surface of the catalyst. Compared to the unmodified catalyst, the optimized catalyst (CZA-H-C1) not only exhibits an improved methanol selectivity of 62.5% (250 °C and 3 MPa) but also retains a minimal degree of deactivation of 9.57% over a 100 h period. By characterizing the catalysts with XRD, TEM, XPS and in situ DRIFTS spectroscopy, it was found that the surface carbonate species on Cu-based catalysts could significantly enhance the reaction and shield the active sites. This study offers theoretical insights and practical strategies for the rational design and optimization of high-performance heterogeneous catalysts.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.