In Situ Growth of Au NPs on Nitrogen-Doped Graphene Quantum Dots Decorated Graphene Composites for the Construction of an Electrochemical Immunosensor and Its Application in CEA Detection.
{"title":"In Situ Growth of Au NPs on Nitrogen-Doped Graphene Quantum Dots Decorated Graphene Composites for the Construction of an Electrochemical Immunosensor and Its Application in CEA Detection.","authors":"Zhengzheng Yan, Lujie Wang, Fei Yan","doi":"10.3390/molecules30061347","DOIUrl":null,"url":null,"abstract":"<p><p>Carcinoembryonic antigen (CEA) is an important tumor biomarker for the early clinical diagnosis of various cancers, and, therefore, the accurate and sensitive quantitative determination of CEA is of vital significance. In this study, we demonstrated the in situ growth of Au nanoparticles (AuNPs) on nitrogen-doped graphene quantum dots (N-GQDs) decorated reduced graphene oxide (rGO) nanocomposites by using simple drop-coating and electrochemical deposition methods. N-GQDs@rGO can be formed through the π-π stacking interaction and possesses a high specific surface area and many functional groups, providing lots of anchor sites (amino moieties in NGQDs) for the in situ electrochemical growth of AuNPs without the addition of reductants and protective agents. Such AuNPs/N-GQDs@rGO ternary nanocomposites combine the characteristics of three nanomaterials, showing a large surface area, excellent solubility, good conductivity, catalytic activity, a simple fabrication process, and notable stability, which are further used to construct a label-free electrochemical immunosensor for the determination of CEA. Under the optimized experimental conditions, the AuNPs/N-GQDs@rGO-based electrochemical immunosensor achieves a broad linear response, ranging from 1 pg/mL to 0.5 μg/mL and a low detection limit of 0.13 pg/mL. Moreover, the AuNPs/N-GQDs@rGO-based electrochemical immunosensor shows exceptional selectivity, anti-interference, and anti-fouling capabilities for the direct analysis of CEA amounts in fetal bovine serum samples, showing vast potential in the clinical screening of cancer.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061347","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carcinoembryonic antigen (CEA) is an important tumor biomarker for the early clinical diagnosis of various cancers, and, therefore, the accurate and sensitive quantitative determination of CEA is of vital significance. In this study, we demonstrated the in situ growth of Au nanoparticles (AuNPs) on nitrogen-doped graphene quantum dots (N-GQDs) decorated reduced graphene oxide (rGO) nanocomposites by using simple drop-coating and electrochemical deposition methods. N-GQDs@rGO can be formed through the π-π stacking interaction and possesses a high specific surface area and many functional groups, providing lots of anchor sites (amino moieties in NGQDs) for the in situ electrochemical growth of AuNPs without the addition of reductants and protective agents. Such AuNPs/N-GQDs@rGO ternary nanocomposites combine the characteristics of three nanomaterials, showing a large surface area, excellent solubility, good conductivity, catalytic activity, a simple fabrication process, and notable stability, which are further used to construct a label-free electrochemical immunosensor for the determination of CEA. Under the optimized experimental conditions, the AuNPs/N-GQDs@rGO-based electrochemical immunosensor achieves a broad linear response, ranging from 1 pg/mL to 0.5 μg/mL and a low detection limit of 0.13 pg/mL. Moreover, the AuNPs/N-GQDs@rGO-based electrochemical immunosensor shows exceptional selectivity, anti-interference, and anti-fouling capabilities for the direct analysis of CEA amounts in fetal bovine serum samples, showing vast potential in the clinical screening of cancer.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.