Norbert Német, Hugh Shearer Lawson, Masaki Itatani, Federico Rossi, Nobuhiko J Suematsu, Hiroyuki Kitahata, István Lagzi
{"title":"A Non-Autonomous Amphoteric Metal Hydroxide Oscillations and Pattern Formation in Hydrogels.","authors":"Norbert Német, Hugh Shearer Lawson, Masaki Itatani, Federico Rossi, Nobuhiko J Suematsu, Hiroyuki Kitahata, István Lagzi","doi":"10.3390/molecules30061323","DOIUrl":null,"url":null,"abstract":"<p><p>Oscillations in animate and inanimate systems are ubiquitous phenomena driven by sophisticated chemical reaction networks. Non-autonomous chemical oscillators have been designed to mimic oscillatory behavior using programmable syringe pumps. Here, we investigated the non-autonomous oscillations, pattern formation, and front propagation of amphoteric hydroxide (aluminum (III), zinc (II), tin (II), and lead (II)) precipitates under controlled pH conditions. A continuous stirred-tank reactor with modulated inflows of acidic and alkaline solutions generated pH oscillations, leading to periodic precipitation and dissolution of metal hydroxides in time. The generated turbidity oscillations exhibited ion-specific patterns, enabling their characterization through quantitative parameters such as peak width (<i>W</i>) and asymmetry (<i>As</i>). The study of mixed metal cationic systems showed that turbidity patterns contained signatures of both hydroxides due to the formation of mixed hydroxides and oxyhydroxides. The reaction-diffusion setup in solid hydrogel columns produced spatial precipitation patterns depending on metal cations and their concentrations. Additionally, in the case of tin (II), a propagating precipitation front was observed in a thin precipitation layer. These findings provide new insights into precipitation pattern formation and open avenues for metal ion identification and further exploration of complex reaction-diffusion systems.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944573/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061323","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oscillations in animate and inanimate systems are ubiquitous phenomena driven by sophisticated chemical reaction networks. Non-autonomous chemical oscillators have been designed to mimic oscillatory behavior using programmable syringe pumps. Here, we investigated the non-autonomous oscillations, pattern formation, and front propagation of amphoteric hydroxide (aluminum (III), zinc (II), tin (II), and lead (II)) precipitates under controlled pH conditions. A continuous stirred-tank reactor with modulated inflows of acidic and alkaline solutions generated pH oscillations, leading to periodic precipitation and dissolution of metal hydroxides in time. The generated turbidity oscillations exhibited ion-specific patterns, enabling their characterization through quantitative parameters such as peak width (W) and asymmetry (As). The study of mixed metal cationic systems showed that turbidity patterns contained signatures of both hydroxides due to the formation of mixed hydroxides and oxyhydroxides. The reaction-diffusion setup in solid hydrogel columns produced spatial precipitation patterns depending on metal cations and their concentrations. Additionally, in the case of tin (II), a propagating precipitation front was observed in a thin precipitation layer. These findings provide new insights into precipitation pattern formation and open avenues for metal ion identification and further exploration of complex reaction-diffusion systems.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.