Developing Striga resistance in sorghum by modulating host cues through CRISPR/Cas9 gene editing.

IF 5.3 2区 生物学 Q1 PLANT SCIENCES
Sirisha Kaniganti, Sudhakar Reddy Palakolanu, Benjamin Thiombiano, Jagadeesh Damarasingh, Pradeep Reddy Bommineni, Ping Che, Kiran Kumar Sharma, Todd Jones, Harro Bouwmeester, Pooja Bhatnagar-Mathur
{"title":"Developing Striga resistance in sorghum by modulating host cues through CRISPR/Cas9 gene editing.","authors":"Sirisha Kaniganti, Sudhakar Reddy Palakolanu, Benjamin Thiombiano, Jagadeesh Damarasingh, Pradeep Reddy Bommineni, Ping Che, Kiran Kumar Sharma, Todd Jones, Harro Bouwmeester, Pooja Bhatnagar-Mathur","doi":"10.1007/s00299-025-03474-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>High transformation and gene editing efficiencies in sorghum-produced, transgene-free SDN1-edited plants exhibit precise mutations, reduced germination stimulants, and enhanced resistance to Striga infection. Sorghum (Sorghum bicolor L.) is a primary food staple grain for millions in Sub-Saharan Africa (SSA). It is mainly constrained by the parasitic weed Striga, which causes up to 100% yield losses and affects over 60% of cultivable farmlands and livelihoods. In this study, CRISPR/Cas9 technology is utilized to induce mutations in core strigolactone (SL) biosynthetic genes, i.e., CCD7, CCD8, MAX1, in addition to an uncharacterized gene (DUF) in the fine-mapped 400 kb lgs1 region in sorghum to develop durable Striga resistance. Two sorghum cultivars were delivered with the expression cassettes through immature embryo-based Agrobacterium-mediated transformation. Our study demonstrated transformation and gene editing efficiencies of ~ 70 and up to 17.5% (calculated based on the numuber of established plants), respectively, in two sorghum genotypes. Subsequent analysis of homozygous E<sub>0</sub> lines in the E<sub>1</sub> generation confirmed stable integration of mutations for all targeted genes. Loss-of-function mutations in the CCD7, CCD8, MAX1, and DUF genes led to a significant downregulation of the expression of associated genes in the SL biosynthetic pathway. The phenotypic analysis of edited lines revealed changes in phenotypic patterns compared to wild-type plants. Analysis of root exudates showed significant reductions in SL production in edited lines compared to wild-type plants. Striga infection experiments demonstrated delayed or reduced emergence rates of Striga in edited lines with lower SL production, highlighting the potential for genetically altering SL production to control Striga infestations. This study provides insights into the functional roles of CCD7, CCD8, MAX1, and DUF genes in sorghum towards reduced and/or altered SL production and improved resistance to Striga infestations.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 4","pages":"90"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03474-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: High transformation and gene editing efficiencies in sorghum-produced, transgene-free SDN1-edited plants exhibit precise mutations, reduced germination stimulants, and enhanced resistance to Striga infection. Sorghum (Sorghum bicolor L.) is a primary food staple grain for millions in Sub-Saharan Africa (SSA). It is mainly constrained by the parasitic weed Striga, which causes up to 100% yield losses and affects over 60% of cultivable farmlands and livelihoods. In this study, CRISPR/Cas9 technology is utilized to induce mutations in core strigolactone (SL) biosynthetic genes, i.e., CCD7, CCD8, MAX1, in addition to an uncharacterized gene (DUF) in the fine-mapped 400 kb lgs1 region in sorghum to develop durable Striga resistance. Two sorghum cultivars were delivered with the expression cassettes through immature embryo-based Agrobacterium-mediated transformation. Our study demonstrated transformation and gene editing efficiencies of ~ 70 and up to 17.5% (calculated based on the numuber of established plants), respectively, in two sorghum genotypes. Subsequent analysis of homozygous E0 lines in the E1 generation confirmed stable integration of mutations for all targeted genes. Loss-of-function mutations in the CCD7, CCD8, MAX1, and DUF genes led to a significant downregulation of the expression of associated genes in the SL biosynthetic pathway. The phenotypic analysis of edited lines revealed changes in phenotypic patterns compared to wild-type plants. Analysis of root exudates showed significant reductions in SL production in edited lines compared to wild-type plants. Striga infection experiments demonstrated delayed or reduced emergence rates of Striga in edited lines with lower SL production, highlighting the potential for genetically altering SL production to control Striga infestations. This study provides insights into the functional roles of CCD7, CCD8, MAX1, and DUF genes in sorghum towards reduced and/or altered SL production and improved resistance to Striga infestations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信