The Proteomic Analysis of Platelet Extracellular Vesicles in Diabetic Patients by nanoLC-MALDI-MS/MS and nanoLC-TIMS-MS/MS.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Joanna Kasprzyk-Pochopień, Agnieszka Kamińska, Przemysław Mielczarek, Radosław Porada, Ewa Stępień, Wojciech Piekoszewski
{"title":"The Proteomic Analysis of Platelet Extracellular Vesicles in Diabetic Patients by nanoLC-MALDI-MS/MS and nanoLC-TIMS-MS/MS.","authors":"Joanna Kasprzyk-Pochopień, Agnieszka Kamińska, Przemysław Mielczarek, Radosław Porada, Ewa Stępień, Wojciech Piekoszewski","doi":"10.3390/molecules30061384","DOIUrl":null,"url":null,"abstract":"<p><p>Platelet extracellular vesicles (PEVs) are emerging as key biomarkers in diabetes mellitus (DM), reflecting altered platelet function and coagulation pathways. This study compares two proteomic techniques-nanoLC-MALDI-MS/MS and nanoLC-TIMS-MS/MS-for analyzing PEVs in diabetic patients, to assess their potential for biomarker discovery. PEVs were isolated from platelet-rich plasma and characterized using tunable resistive pulse sensing (TRPS), Fourier-transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). Proteomic analyses identified significant differences in protein expression between diabetic and non-diabetic individuals, with nanoLC-TIMS-MS/MS demonstrating superior sensitivity by detecting 97% more unique proteins than nanoLC-MALDI-MS/MS. Key differentially expressed proteins included apolipoproteins and oxidative stress markers, which may contribute to platelet dysfunction and cardiovascular complications in DM. Sex-specific variations in protein expression were also observed, highlighting potential differences in disease progression between male and female patients. The integration of advanced proteomic methodologies provides novel insights into the role of PEVs in diabetes pathophysiology, underscoring their diagnostic and therapeutic potential. These findings pave the way for improved biomarker-based strategies for early detection and monitoring of diabetic complications.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061384","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Platelet extracellular vesicles (PEVs) are emerging as key biomarkers in diabetes mellitus (DM), reflecting altered platelet function and coagulation pathways. This study compares two proteomic techniques-nanoLC-MALDI-MS/MS and nanoLC-TIMS-MS/MS-for analyzing PEVs in diabetic patients, to assess their potential for biomarker discovery. PEVs were isolated from platelet-rich plasma and characterized using tunable resistive pulse sensing (TRPS), Fourier-transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). Proteomic analyses identified significant differences in protein expression between diabetic and non-diabetic individuals, with nanoLC-TIMS-MS/MS demonstrating superior sensitivity by detecting 97% more unique proteins than nanoLC-MALDI-MS/MS. Key differentially expressed proteins included apolipoproteins and oxidative stress markers, which may contribute to platelet dysfunction and cardiovascular complications in DM. Sex-specific variations in protein expression were also observed, highlighting potential differences in disease progression between male and female patients. The integration of advanced proteomic methodologies provides novel insights into the role of PEVs in diabetes pathophysiology, underscoring their diagnostic and therapeutic potential. These findings pave the way for improved biomarker-based strategies for early detection and monitoring of diabetic complications.

nanoLC-MALDI-MS/MS和nanoLC-TIMS-MS/MS对糖尿病患者血小板细胞外小泡的蛋白质组学分析
血小板细胞外囊泡(PEVs)正在成为糖尿病(DM)的关键生物标志物,反映了血小板功能和凝血途径的改变。本研究比较了两种用于分析糖尿病患者pev的蛋白质组学技术——nanolc - maldi -MS/MS和nanoLC-TIMS-MS/MS,以评估它们在生物标志物发现方面的潜力。pev是从富含血小板的等离子体中分离出来的,并使用可调电阻脉冲传感(TRPS)、傅里叶变换红外(FTIR)光谱和透射电子显微镜(TEM)对其进行了表征。蛋白质组学分析发现糖尿病和非糖尿病个体之间的蛋白质表达存在显著差异,nanoLC-TIMS-MS/MS比nanoLC-MALDI-MS/MS检测到97%的独特蛋白质,显示出更高的灵敏度。关键的差异表达蛋白包括载脂蛋白和氧化应激标志物,它们可能导致糖尿病的血小板功能障碍和心血管并发症。此外,还观察到蛋白质表达的性别特异性变化,强调了男性和女性患者疾病进展的潜在差异。先进的蛋白质组学方法的整合为pev在糖尿病病理生理中的作用提供了新的见解,强调了它们的诊断和治疗潜力。这些发现为改进基于生物标志物的糖尿病并发症早期检测和监测策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信