Ming Shang, Yongchao Gao, Liwen Zheng, Lei Ji, Jianhua Du, Xue Kong, Hui Wang, Feng Shi, Hailun Wang, Jianhui Liu, Xiaodong Yang, Zeyu Wang
{"title":"Vertical Distribution and Drivers of Antibiotic Resistance Genes in Agricultural Soil Irrigated with Livestock Wastewater.","authors":"Ming Shang, Yongchao Gao, Liwen Zheng, Lei Ji, Jianhua Du, Xue Kong, Hui Wang, Feng Shi, Hailun Wang, Jianhui Liu, Xiaodong Yang, Zeyu Wang","doi":"10.3390/microorganisms13030610","DOIUrl":null,"url":null,"abstract":"<p><p>Livestock wastewater reuse could be a potential source for the distribution of antibiotics, antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) in agricultural soil. In this study, soil samples were collected from different depths (0-60 cm) of farmland that has been subjected to long-term application of livestock wastewater. The vertical distribution of antibiotics, bacterial communities, and ARGs were assessed to identify the driving factors that could potentially influence the distribution of ARB and ARGs. The results demonstrated distinguished distributions of antibiotics along the soil depths, with tetracyclines (TCs) mainly found in the top 10 cm of the soil (0.11-0.31 μg/kg), while quinolones (QNs), sulfonamides (SAs), and macrolides (MLs) were detected in all 60 cm of soil depth (0.01-0.22 μg/kg). The selection pressure of antibiotics to microorganisms led to the proliferation of ARB, especially tetracycline-resistant bacteria and erythromycin-resistant bacteria. In terms of the distribution/abundance of ARGs, <i>novA</i> and <i>tetA</i> (58) were relatively higher in 0-10 cm surface soil, while <i>vanRM</i> and <i>vanRF</i> were mainly detected in the deeper soil. Different ARGs may have the same host bacteria, which lead to the emergence of multidrug resistant bacteria, such as <i>Ilumatobacter</i> sp., <i>Aggregatilinea</i> sp., <i>Rhabdothermincola</i> sp., and <i>Ornithinimicrobium</i> sp. Soil pH, electrical conductivity (EC), and moisture content (MC) could affect the distribution and proliferation of ARB and were found negatively correlated with most of the ARGs except <i>macB</i>. Therefore, it is potentially possible to eliminate/inhibit the spread of ARGs by adjusting these soil parameters. These findings provide insights into the distribution and dissemination of antibiotics, ARB, and ARGs in agricultural practices of livestock wastewater irrigation and provide effective mitigation strategies to ensure the safe use of livestock wastewater in agriculture.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 3","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946449/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13030610","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Livestock wastewater reuse could be a potential source for the distribution of antibiotics, antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) in agricultural soil. In this study, soil samples were collected from different depths (0-60 cm) of farmland that has been subjected to long-term application of livestock wastewater. The vertical distribution of antibiotics, bacterial communities, and ARGs were assessed to identify the driving factors that could potentially influence the distribution of ARB and ARGs. The results demonstrated distinguished distributions of antibiotics along the soil depths, with tetracyclines (TCs) mainly found in the top 10 cm of the soil (0.11-0.31 μg/kg), while quinolones (QNs), sulfonamides (SAs), and macrolides (MLs) were detected in all 60 cm of soil depth (0.01-0.22 μg/kg). The selection pressure of antibiotics to microorganisms led to the proliferation of ARB, especially tetracycline-resistant bacteria and erythromycin-resistant bacteria. In terms of the distribution/abundance of ARGs, novA and tetA (58) were relatively higher in 0-10 cm surface soil, while vanRM and vanRF were mainly detected in the deeper soil. Different ARGs may have the same host bacteria, which lead to the emergence of multidrug resistant bacteria, such as Ilumatobacter sp., Aggregatilinea sp., Rhabdothermincola sp., and Ornithinimicrobium sp. Soil pH, electrical conductivity (EC), and moisture content (MC) could affect the distribution and proliferation of ARB and were found negatively correlated with most of the ARGs except macB. Therefore, it is potentially possible to eliminate/inhibit the spread of ARGs by adjusting these soil parameters. These findings provide insights into the distribution and dissemination of antibiotics, ARB, and ARGs in agricultural practices of livestock wastewater irrigation and provide effective mitigation strategies to ensure the safe use of livestock wastewater in agriculture.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.