Ultrasonic Signal Processing Method for Dynamic Burning Rate Measurement Based on Improved Wavelet Thresholding and Extreme Value Feature Fitting.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-02-28 DOI:10.3390/mi16030290
Wenlong Wei, Xiaolong Yan, Juan Cui, Ruizhi Wang, Yongqiu Zheng, Chenyang Xue
{"title":"Ultrasonic Signal Processing Method for Dynamic Burning Rate Measurement Based on Improved Wavelet Thresholding and Extreme Value Feature Fitting.","authors":"Wenlong Wei, Xiaolong Yan, Juan Cui, Ruizhi Wang, Yongqiu Zheng, Chenyang Xue","doi":"10.3390/mi16030290","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasonic measurement techniques are increasingly used to measure the burning rates of solid rocket fuel, but challenges arise due to noise and signal attenuation caused by the motor's multi-layered structure. This paper proposes an adaptive thresholding method combined with a wavelet threshold function for effective ultrasonic signal denoising. Additionally, an extreme value feature fitting algorithm is introduced for accurate echo signal localization, even in low signal-to-noise ratio (SNR) conditions. Numerical simulations show a 10 dB improvement in SNR at -20 dB, with a correlation coefficient of 0.83 between the denoised and true signals. Echo localization tests across 12 SNR levels demonstrate a consistent error below 1 μs. Compared to other algorithms, the proposed method achieves higher precision, with a maximum displacement error of 0.74 mm. Hardware-in-the-loop experiments show an increase in SNR from -15 dB to 5.78 dB, with maximum displacement and rate errors of 0.9239 mm and 0.781 mm/s. In fuel-burning experiments, the burning rate curve closely matches the theoretical curve, with an initial fuel thickness error of only 0.12 mm, confirming the method's effectiveness in complex environments.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030290","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasonic measurement techniques are increasingly used to measure the burning rates of solid rocket fuel, but challenges arise due to noise and signal attenuation caused by the motor's multi-layered structure. This paper proposes an adaptive thresholding method combined with a wavelet threshold function for effective ultrasonic signal denoising. Additionally, an extreme value feature fitting algorithm is introduced for accurate echo signal localization, even in low signal-to-noise ratio (SNR) conditions. Numerical simulations show a 10 dB improvement in SNR at -20 dB, with a correlation coefficient of 0.83 between the denoised and true signals. Echo localization tests across 12 SNR levels demonstrate a consistent error below 1 μs. Compared to other algorithms, the proposed method achieves higher precision, with a maximum displacement error of 0.74 mm. Hardware-in-the-loop experiments show an increase in SNR from -15 dB to 5.78 dB, with maximum displacement and rate errors of 0.9239 mm and 0.781 mm/s. In fuel-burning experiments, the burning rate curve closely matches the theoretical curve, with an initial fuel thickness error of only 0.12 mm, confirming the method's effectiveness in complex environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信