{"title":"Transient Gel Diffusiophoresis of a Spherical Colloidal Particle.","authors":"Hiroyuki Ohshima","doi":"10.3390/mi16030266","DOIUrl":null,"url":null,"abstract":"<p><p>A general theory is presented to analyze the time-dependent, transient diffusiophoresis of a charged spherical colloidal particle in an uncharged gel medium containing a symmetrical electrolyte when an electrolyte concentration gradient is suddenly applied. We derive the inverse Laplace transform of an approximate expression for the relaxation function <i>R</i>(<i>t</i>), which describes the time-course of the ratio of the diffusiophoretic mobility of a weakly charged spherical colloidal particle, possessing a thin electrical double layer, to its steady-state diffusiophoretic mobility. The relaxation function depends on the mass density ratio of the particle to the electrolyte solution, the particle radius, the Brinkman screening length, and the kinematic viscosity. However, it does not depend on the type of electrolyte (e.g., KCl or NaCl), which affects only the steady-state gel diffusiophoretic mobility. It is also found that the expression for the relaxation function in transient gel diffusiophoresis of a weakly charged spherical colloidal particle with a thin electrical double layer takes the same form as that for its transient gel electrophoresis.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945194/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030266","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A general theory is presented to analyze the time-dependent, transient diffusiophoresis of a charged spherical colloidal particle in an uncharged gel medium containing a symmetrical electrolyte when an electrolyte concentration gradient is suddenly applied. We derive the inverse Laplace transform of an approximate expression for the relaxation function R(t), which describes the time-course of the ratio of the diffusiophoretic mobility of a weakly charged spherical colloidal particle, possessing a thin electrical double layer, to its steady-state diffusiophoretic mobility. The relaxation function depends on the mass density ratio of the particle to the electrolyte solution, the particle radius, the Brinkman screening length, and the kinematic viscosity. However, it does not depend on the type of electrolyte (e.g., KCl or NaCl), which affects only the steady-state gel diffusiophoretic mobility. It is also found that the expression for the relaxation function in transient gel diffusiophoresis of a weakly charged spherical colloidal particle with a thin electrical double layer takes the same form as that for its transient gel electrophoresis.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.