Yulong Peng, Luhua Jiang, Junzhao Wu, Jiejie Yang, Ziwen Guo, Manjun Miao, Zhiyuan Peng, Meng Chang, Bo Miao, Hongwei Liu, Yili Liang, Huaqun Yin, Qiang He, Xueduan Liu
{"title":"Red Mud Potentially Alleviates Ammonia Nitrogen Inhibition in Swine Manure Anaerobic Digestion by Enhancing Phage-Mediated Ammonia Assimilation.","authors":"Yulong Peng, Luhua Jiang, Junzhao Wu, Jiejie Yang, Ziwen Guo, Manjun Miao, Zhiyuan Peng, Meng Chang, Bo Miao, Hongwei Liu, Yili Liang, Huaqun Yin, Qiang He, Xueduan Liu","doi":"10.3390/microorganisms13030690","DOIUrl":null,"url":null,"abstract":"<p><p>Red mud has been demonstrated to improve the methane production performance of anaerobic digestion (AD). However, the influence of red mud on ammonia nitrogen inhibition during AD through the mediating role of bacteria-phages interactions in this process remains poorly understood. Thus, this study investigated the impact of red mud on nitrogen metabolism in AD and characterized the phage and prokaryotic communities through a metagenomic analysis. The results showed that red mud significantly increased methane production by 23.1% and promoted the conversion of ammonia nitrogen into organic nitrogen, resulting in a 4.8% increase in total nitrogen. Simultaneously, it enriched the key microbial genera <i>Methanothrix</i>, <i>Proteinophilum</i>, and <i>Petrimonas</i> by 0.5%, 0.8%, and 2.7%, respectively, suggesting an enhancement in syntrophic acetate oxidation with greater ammonia tolerance. A viral metagenomic analysis identified seven nitrogen-metabolism-related auxiliary metabolic genes (AMGs), with <i>glnA</i> (encoding glutamine synthetase) being the most abundant. Compared to the control treatments, the red mud treatments led to a higher abundance of temperate phages and an increased number of AMGs. Furthermore, two new hosts carrying <i>glnA</i> (<i>Mycolicibacteria smegmatis</i> and <i>Kitasatopola aureofaciens</i>) were predicted, indicating that red mud expanded the host range of phages and promoted the spread of AMGs. Overall, our findings highlight the importance of phages in alleviating ammonia nitrogen inhibition and provide a novel understanding of the role of red mud in the AD of swine manure.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 3","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13030690","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Red mud has been demonstrated to improve the methane production performance of anaerobic digestion (AD). However, the influence of red mud on ammonia nitrogen inhibition during AD through the mediating role of bacteria-phages interactions in this process remains poorly understood. Thus, this study investigated the impact of red mud on nitrogen metabolism in AD and characterized the phage and prokaryotic communities through a metagenomic analysis. The results showed that red mud significantly increased methane production by 23.1% and promoted the conversion of ammonia nitrogen into organic nitrogen, resulting in a 4.8% increase in total nitrogen. Simultaneously, it enriched the key microbial genera Methanothrix, Proteinophilum, and Petrimonas by 0.5%, 0.8%, and 2.7%, respectively, suggesting an enhancement in syntrophic acetate oxidation with greater ammonia tolerance. A viral metagenomic analysis identified seven nitrogen-metabolism-related auxiliary metabolic genes (AMGs), with glnA (encoding glutamine synthetase) being the most abundant. Compared to the control treatments, the red mud treatments led to a higher abundance of temperate phages and an increased number of AMGs. Furthermore, two new hosts carrying glnA (Mycolicibacteria smegmatis and Kitasatopola aureofaciens) were predicted, indicating that red mud expanded the host range of phages and promoted the spread of AMGs. Overall, our findings highlight the importance of phages in alleviating ammonia nitrogen inhibition and provide a novel understanding of the role of red mud in the AD of swine manure.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.