Surface Characteristics and Fatigue Resistance of Ultrasonic Rolling-Treated 20Cr1Mo1V1A Valve Stem.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-02-26 DOI:10.3390/mi16030265
Shuailing Lan, Fan Chen, Wenbo Bie, Meng Qi, Zhiyuan Zhang
{"title":"Surface Characteristics and Fatigue Resistance of Ultrasonic Rolling-Treated 20Cr1Mo1V1A Valve Stem.","authors":"Shuailing Lan, Fan Chen, Wenbo Bie, Meng Qi, Zhiyuan Zhang","doi":"10.3390/mi16030265","DOIUrl":null,"url":null,"abstract":"<p><p>The valve stem made of 20CrMo1V1A has low surface resistance and high susceptibility to corrosion, significantly curtailing its service life. To address these issues, a high-quality ultrasonic rolling (USR) technology was applied to the 20CrMo1V1A stainless steel valve stem to enhance its corrosion resistance and mechanical properties. Subsequently, fatigue and corrosion tests were conducted on the valve stem. The results indicate that USR produces surfaces with a roughness average (Ra) of 0.3 μm and a gradient nanostructure on the valve stem surface. This unique microstructural modification resulted in a 27% improvement in surface hardness and nearly a three-fold grain size reduction. Additionally, the friction coefficient and electrochemical corrosion rate dropped by 47% and 32%, respectively. Therefore, USR was applicable for enhancing multiple properties of valve components as an additional final processing step for achieving high-performance valve stems.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030265","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The valve stem made of 20CrMo1V1A has low surface resistance and high susceptibility to corrosion, significantly curtailing its service life. To address these issues, a high-quality ultrasonic rolling (USR) technology was applied to the 20CrMo1V1A stainless steel valve stem to enhance its corrosion resistance and mechanical properties. Subsequently, fatigue and corrosion tests were conducted on the valve stem. The results indicate that USR produces surfaces with a roughness average (Ra) of 0.3 μm and a gradient nanostructure on the valve stem surface. This unique microstructural modification resulted in a 27% improvement in surface hardness and nearly a three-fold grain size reduction. Additionally, the friction coefficient and electrochemical corrosion rate dropped by 47% and 32%, respectively. Therefore, USR was applicable for enhancing multiple properties of valve components as an additional final processing step for achieving high-performance valve stems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信