Yusheng Qian, Danjing Yang, Xiangyu Lin, Chenyun Shen, Jieping Zhang, Jin Xu, Yan Zhao, Ling Zhu, Haoran Kong, Mingyu Zhang, Yueqian Zhu, Chuncai Zhou, Jing He
{"title":"Dendrimer-Derived Mimics of Host Defense Peptides Selectively Disrupt Cancer Cell Membranes for Melanoma Therapy.","authors":"Yusheng Qian, Danjing Yang, Xiangyu Lin, Chenyun Shen, Jieping Zhang, Jin Xu, Yan Zhao, Ling Zhu, Haoran Kong, Mingyu Zhang, Yueqian Zhu, Chuncai Zhou, Jing He","doi":"10.3390/pharmaceutics17030361","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Melanoma is one of the most common malignancies, posing a significant health threat to patients, particularly in advanced stages due to its high aggressiveness. Chemotherapy agents with biocompatibility and low susceptibility to induce resistance are required for systematic management. <b>Methods</b>: Dendrimer-derived mimics (DMs) of host defense peptides (HDPs), which were constructed by a dendrimer core and optimized ratios of the hydrophobic arm, were used to treat A375 cells and HaCaT cells as the control. Live/dead staining, flow cytometry, and scanning electron microscopy (SEM) were conducted to analyze the anticancer mechanism. Mice with subcutaneous tumors were used to test the antitumor activity and toxicity in vivo. <b>Results</b>: DMs exhibited enhanced activity against A375 cells with remarkable selectivity, which mimics the action of natural HDPs and can cause damage to cell membranes. DMs can effectively inhibit solid tumor growth with minimal systemic toxicity and no adverse effects on healthy tissues. <b>Conclusion</b>: All the findings highlight DMs as promising anticancer candidates with significant potential for systemic melanoma therapy.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17030361","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Melanoma is one of the most common malignancies, posing a significant health threat to patients, particularly in advanced stages due to its high aggressiveness. Chemotherapy agents with biocompatibility and low susceptibility to induce resistance are required for systematic management. Methods: Dendrimer-derived mimics (DMs) of host defense peptides (HDPs), which were constructed by a dendrimer core and optimized ratios of the hydrophobic arm, were used to treat A375 cells and HaCaT cells as the control. Live/dead staining, flow cytometry, and scanning electron microscopy (SEM) were conducted to analyze the anticancer mechanism. Mice with subcutaneous tumors were used to test the antitumor activity and toxicity in vivo. Results: DMs exhibited enhanced activity against A375 cells with remarkable selectivity, which mimics the action of natural HDPs and can cause damage to cell membranes. DMs can effectively inhibit solid tumor growth with minimal systemic toxicity and no adverse effects on healthy tissues. Conclusion: All the findings highlight DMs as promising anticancer candidates with significant potential for systemic melanoma therapy.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.