{"title":"Polythiophene/Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> MXene Composites for Effective Removal of Diverse Organic Dyes via Complementary Activity of Adsorption and Photodegradation.","authors":"Young-Hwan Bae, Seongin Hong, Jin-Seo Noh","doi":"10.3390/molecules30061393","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an effective method to remove organic dyes from wastewater, using a composite of few-layered porous (FLP) Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and polythiophene (PTh) nanospheres. The FLP MXene, which was pre-synthesized by a series of intercalation, heat-induced TiO<sub>2</sub> formation, and its selective etching, was combined with PTh nanospheres via a simple solution method. The composite effectively removed various organic dyes, but its efficiency was altered depending on the type of dye. Particularly, the removal efficiency of methylene blue reached 91.3% and 97.8% after irradiation for 10 min and 1 h, respectively. The high dye removal efficiency was attributed to the large surface area (32.01 m<sup>2</sup>/g) of the composite, strong electrostatic interaction between the composite and dye molecules, and active photodegradation process. The strong electrostatic interaction and large surface area could facilitate the adsorption of dye molecules, while photocatalytic activity further enhance dye removal under light. These results are indicative that the PTh/FLP MXene composite may be a promising material for environmental remediation through synergistic processes of adsorption and photocatalysis.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 6","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944630/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30061393","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an effective method to remove organic dyes from wastewater, using a composite of few-layered porous (FLP) Ti3C2Tx MXene and polythiophene (PTh) nanospheres. The FLP MXene, which was pre-synthesized by a series of intercalation, heat-induced TiO2 formation, and its selective etching, was combined with PTh nanospheres via a simple solution method. The composite effectively removed various organic dyes, but its efficiency was altered depending on the type of dye. Particularly, the removal efficiency of methylene blue reached 91.3% and 97.8% after irradiation for 10 min and 1 h, respectively. The high dye removal efficiency was attributed to the large surface area (32.01 m2/g) of the composite, strong electrostatic interaction between the composite and dye molecules, and active photodegradation process. The strong electrostatic interaction and large surface area could facilitate the adsorption of dye molecules, while photocatalytic activity further enhance dye removal under light. These results are indicative that the PTh/FLP MXene composite may be a promising material for environmental remediation through synergistic processes of adsorption and photocatalysis.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.