Isolation and Identification of Bacterial Strains Colonizing the Surface of Biodegradable Polymers.

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Roberta Esposito, Serena Federico, Amalia Amato, Thomas Viel, Davide Caramiello, Alberto Macina, Marco Miralto, Luca Ambrosino, Maria Luisa Chiusano, Mariacristina Cocca, Loredana Manfra, Giovanni Libralato, Valerio Zupo, Maria Costantini
{"title":"Isolation and Identification of Bacterial Strains Colonizing the Surface of Biodegradable Polymers.","authors":"Roberta Esposito, Serena Federico, Amalia Amato, Thomas Viel, Davide Caramiello, Alberto Macina, Marco Miralto, Luca Ambrosino, Maria Luisa Chiusano, Mariacristina Cocca, Loredana Manfra, Giovanni Libralato, Valerio Zupo, Maria Costantini","doi":"10.3390/microorganisms13030609","DOIUrl":null,"url":null,"abstract":"<p><p>Plastics play a key role in every sector of the economy, being used in the manufacturing of products in the fields of health, food packaging, and agriculture. Their mismanagement poses a serious threat to ecosystems and, in general, to human life. For this reason, particular attention has been paid in the last decade to the use of biodegradable polymers (BPs) as an alternative to classic plastics. In this study, we aimed to identify bacterial strains able to colonize the surface of five BPs: poly(butylene succinate) (PBS), poly(butylene succinate-co-butylene adipate) (PBSA), poly(ε-caprolactone), (PCL), poly(3-hydroxybutyrate) (PHB), and poly(lactic acid) (PLA). For this experiment, mesocosms were designed ad hoc to mimic the conditions in which the polymers can be found in marine environments: i. suspended in the water column; ii. laying over gravel; and iii. under gravel. Four bacterial samples were taken (3, 4, 10, and 12 months from the start of the experiment) from five BPs incubated in the above-mentioned three conditions. Our results demonstrated that bacteria belonging to the <i>Proteobacteria</i>, <i>Actinobacteria</i>, <i>Firmicutes</i>, <i>Bacillota</i>, <i>Bacteroidota</i>, and <i>Cyanobacteria</i> phyla were the most frequent colonizers of the surfaces of the five polymers under analysis, and could be responsible for their degradation, resulting in the evolution of strategies to degrade plastics through the secretion of specific enzymes.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 3","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944904/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13030609","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plastics play a key role in every sector of the economy, being used in the manufacturing of products in the fields of health, food packaging, and agriculture. Their mismanagement poses a serious threat to ecosystems and, in general, to human life. For this reason, particular attention has been paid in the last decade to the use of biodegradable polymers (BPs) as an alternative to classic plastics. In this study, we aimed to identify bacterial strains able to colonize the surface of five BPs: poly(butylene succinate) (PBS), poly(butylene succinate-co-butylene adipate) (PBSA), poly(ε-caprolactone), (PCL), poly(3-hydroxybutyrate) (PHB), and poly(lactic acid) (PLA). For this experiment, mesocosms were designed ad hoc to mimic the conditions in which the polymers can be found in marine environments: i. suspended in the water column; ii. laying over gravel; and iii. under gravel. Four bacterial samples were taken (3, 4, 10, and 12 months from the start of the experiment) from five BPs incubated in the above-mentioned three conditions. Our results demonstrated that bacteria belonging to the Proteobacteria, Actinobacteria, Firmicutes, Bacillota, Bacteroidota, and Cyanobacteria phyla were the most frequent colonizers of the surfaces of the five polymers under analysis, and could be responsible for their degradation, resulting in the evolution of strategies to degrade plastics through the secretion of specific enzymes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信