Characteristics and Mechanisms of Simultaneous Quinoline and Ammonium Nitrogen Removal by a Robust Bacterium Pseudomonas stutzeri H3.

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Jie Hu, Bing Xu, Jiabao Yan, Guozhi Fan
{"title":"Characteristics and Mechanisms of Simultaneous Quinoline and Ammonium Nitrogen Removal by a Robust Bacterium <i>Pseudomonas stutzeri</i> H3.","authors":"Jie Hu, Bing Xu, Jiabao Yan, Guozhi Fan","doi":"10.3390/microorganisms13030687","DOIUrl":null,"url":null,"abstract":"<p><p>The discharge of organic and inorganic nitrogenous pollutants in wastewater leads to eutrophication and disrupts the ecological balance. Therefore, the pressing need for an effective treatment method has become increasingly evident. A robust bacterium <i>Pseudomonas stutzeri</i> H3 capable of simultaneous organic and inorganic nitrogen removal was isolated from the activated sludge in the coking wastewater treatment system. The optimal conditions for the simultaneous removal of ammonium nitrogen and quinoline were as follows: C/N ratio of 15-20, initial pH of 7-8, culture temperature of 30 °C, and shaking speed of 150-300 rpm. At 200 mg/L ammonium nitrogen and 100 mg/L quinoline, strain H3 achieved above 90% of removal efficiency, exhibiting excellent simultaneous nitrogen removal capabilities. The outstanding nitrogen removal efficiencies in the presence of quinoline and different inorganic nitrogen sources further confirmed the simultaneous organic and inorganic nitrogen removal capability of strain H3. The whole genome sequencing and nitrogen metabolic intermediates determination of strain H3 were performed to elucidate the gene function annotations, nitrogen removal function genes, and nitrogen metabolic pathways. The findings provide a promising pathway to treat the organic and inorganic nitrogenous pollutants in wastewater.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 3","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945285/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13030687","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The discharge of organic and inorganic nitrogenous pollutants in wastewater leads to eutrophication and disrupts the ecological balance. Therefore, the pressing need for an effective treatment method has become increasingly evident. A robust bacterium Pseudomonas stutzeri H3 capable of simultaneous organic and inorganic nitrogen removal was isolated from the activated sludge in the coking wastewater treatment system. The optimal conditions for the simultaneous removal of ammonium nitrogen and quinoline were as follows: C/N ratio of 15-20, initial pH of 7-8, culture temperature of 30 °C, and shaking speed of 150-300 rpm. At 200 mg/L ammonium nitrogen and 100 mg/L quinoline, strain H3 achieved above 90% of removal efficiency, exhibiting excellent simultaneous nitrogen removal capabilities. The outstanding nitrogen removal efficiencies in the presence of quinoline and different inorganic nitrogen sources further confirmed the simultaneous organic and inorganic nitrogen removal capability of strain H3. The whole genome sequencing and nitrogen metabolic intermediates determination of strain H3 were performed to elucidate the gene function annotations, nitrogen removal function genes, and nitrogen metabolic pathways. The findings provide a promising pathway to treat the organic and inorganic nitrogenous pollutants in wastewater.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信