Amira Soliman, Leyanis Rodriguez-Vera, Ana Alarcia-Lacalle, Leandro F Pippa, Saima Subhani, Viera Lukacova, Jorge Duconge, Natalia V de Moraes, Valvanera Vozmediano
{"title":"Leveraging Omeprazole PBPK/PD Modeling to Inform Drug-Drug Interactions and Specific Recommendations for Pediatric Labeling.","authors":"Amira Soliman, Leyanis Rodriguez-Vera, Ana Alarcia-Lacalle, Leandro F Pippa, Saima Subhani, Viera Lukacova, Jorge Duconge, Natalia V de Moraes, Valvanera Vozmediano","doi":"10.3390/pharmaceutics17030373","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Omeprazole is widely used for managing gastrointestinal disorders like GERD, ulcers, and <i>H. pylori</i> infections. However, its use in pediatrics presents challenges due to drug interactions (DDIs), metabolic variability, and safety concerns. Omeprazole's pharmacokinetics (PK), primarily influenced by CYP2C19 metabolism, is affected by ontogenetic changes in enzyme expression, complicating dosing in children. <b>Methods</b>: This study aimed to develop and validate a physiologically based pharmacokinetic (PBPK) model for omeprazole and its metabolites to predict age-related variations in metabolism and response. <b>Results</b>: The PBPK model successfully predicted exposure to parent and metabolites in adults and pediatrics, incorporating competitive and mechanism-based inhibition of CYP2C19 and CYP3A4 by omeprazole and its metabolites. By accounting for age-dependent metabolic pathways, the model enabled priori predictions of omeprazole exposure in different age groups. Linking PK to the pharmacodynamics (PD) model, we described the impact of age-related physiological changes on intragastric pH, the primary outcome for proton pump inhibitors efficacy. <b>Conclusions</b>: The PBPK-PD model allowed for the virtual testing of dosing scenarios, providing an alternative to clinical studies in pediatrics where traditional DDI studies are challenging. This approach offers valuable insights for accurate dosing recommendations in pediatrics, accounting for age-dependent variability in metabolism, and underscores the potential of PBPK modeling in guiding pediatric drug development.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 3","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944414/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17030373","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Omeprazole is widely used for managing gastrointestinal disorders like GERD, ulcers, and H. pylori infections. However, its use in pediatrics presents challenges due to drug interactions (DDIs), metabolic variability, and safety concerns. Omeprazole's pharmacokinetics (PK), primarily influenced by CYP2C19 metabolism, is affected by ontogenetic changes in enzyme expression, complicating dosing in children. Methods: This study aimed to develop and validate a physiologically based pharmacokinetic (PBPK) model for omeprazole and its metabolites to predict age-related variations in metabolism and response. Results: The PBPK model successfully predicted exposure to parent and metabolites in adults and pediatrics, incorporating competitive and mechanism-based inhibition of CYP2C19 and CYP3A4 by omeprazole and its metabolites. By accounting for age-dependent metabolic pathways, the model enabled priori predictions of omeprazole exposure in different age groups. Linking PK to the pharmacodynamics (PD) model, we described the impact of age-related physiological changes on intragastric pH, the primary outcome for proton pump inhibitors efficacy. Conclusions: The PBPK-PD model allowed for the virtual testing of dosing scenarios, providing an alternative to clinical studies in pediatrics where traditional DDI studies are challenging. This approach offers valuable insights for accurate dosing recommendations in pediatrics, accounting for age-dependent variability in metabolism, and underscores the potential of PBPK modeling in guiding pediatric drug development.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.