Progress in Polycrystalline SiC Growth by Low Pressure Chemical Vapor Deposition and Material Characterization.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-02-27 DOI:10.3390/mi16030276
Michail Gavalas, Yann Gallou, Didier Chaussende, Elisabeth Blanquet, Frédéric Mercier, Konstantinos Zekentes
{"title":"Progress in Polycrystalline SiC Growth by Low Pressure Chemical Vapor Deposition and Material Characterization.","authors":"Michail Gavalas, Yann Gallou, Didier Chaussende, Elisabeth Blanquet, Frédéric Mercier, Konstantinos Zekentes","doi":"10.3390/mi16030276","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this paper is to give a review on the state of the art of polycrystalline SiC material grown by low-pressure chemical vapor deposition (LPCVD). Nowadays, LPCVD is the main technique used for the deposition of polycrystalline SiC, both in academic research and industry. Indeed, the LPCVD technique is today the most mature technique to grow high purity polycrystalline thin films with controlled thickness and structure over a large area (>50 cm) and/or 3D substrate. Its ability to have a high degree of modification on the growth conditions and the chosen precursor system allows the deposition of polycrystalline SiC films in various substrates with tailored properties according to the desired application. After a short introduction on the SiC material and its growth by the LPCVD technique, a review of theoretical studies (thermodynamics and kinetics) related to the CVD SiC growth process is given. A synthesis of the experimental studies is made focusing on the effect of the growth conditions on the properties of the deposited SiC polycrystalline material. Despite the numerous results, a full understanding of them is limited due to the complexity of the LPCVD process and the polycrystalline SiC structure. The conclusions show that the growth conditions, like temperature, chamber pressure, (C/Si)<sub>(g)</sub>, (Cl/Si)<sub>(g)</sub>, and doping have an impact on the microstructure and on the corresponding properties of the polycrystalline SiC films. Future perspectives are given in order to improve our understanding on the polycrystalline-SiC-LPCVD process and to enable the growth of tailor-made polycrystalline SiC films for future applications.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946532/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030276","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to give a review on the state of the art of polycrystalline SiC material grown by low-pressure chemical vapor deposition (LPCVD). Nowadays, LPCVD is the main technique used for the deposition of polycrystalline SiC, both in academic research and industry. Indeed, the LPCVD technique is today the most mature technique to grow high purity polycrystalline thin films with controlled thickness and structure over a large area (>50 cm) and/or 3D substrate. Its ability to have a high degree of modification on the growth conditions and the chosen precursor system allows the deposition of polycrystalline SiC films in various substrates with tailored properties according to the desired application. After a short introduction on the SiC material and its growth by the LPCVD technique, a review of theoretical studies (thermodynamics and kinetics) related to the CVD SiC growth process is given. A synthesis of the experimental studies is made focusing on the effect of the growth conditions on the properties of the deposited SiC polycrystalline material. Despite the numerous results, a full understanding of them is limited due to the complexity of the LPCVD process and the polycrystalline SiC structure. The conclusions show that the growth conditions, like temperature, chamber pressure, (C/Si)(g), (Cl/Si)(g), and doping have an impact on the microstructure and on the corresponding properties of the polycrystalline SiC films. Future perspectives are given in order to improve our understanding on the polycrystalline-SiC-LPCVD process and to enable the growth of tailor-made polycrystalline SiC films for future applications.

低压化学气相沉积法生长多晶SiC及材料表征的研究进展。
本文综述了低压化学气相沉积(LPCVD)法制备多晶SiC材料的研究进展。目前,无论是在学术研究还是在工业上,LPCVD都是沉积多晶SiC的主要技术。事实上,LPCVD技术是目前最成熟的技术,可以在大面积(约50厘米)和/或3D衬底上生长厚度和结构可控的高纯度多晶薄膜。它对生长条件和所选择的前驱体系统进行高度修饰的能力允许在各种衬底上沉积多晶SiC薄膜,并根据所需的应用定制性能。在简要介绍了碳化硅材料及其LPCVD生长的基础上,对CVD碳化硅生长的理论研究(热力学和动力学)进行了综述。对实验研究进行了综合,重点研究了生长条件对沉积SiC多晶材料性能的影响。尽管有许多结果,但由于LPCVD工艺和多晶SiC结构的复杂性,对它们的充分理解是有限的。结果表明,温度、腔压、(C/Si)(g)、(Cl/Si)(g)和掺杂等生长条件对多晶SiC薄膜的微观结构和相应的性能都有影响。为了提高我们对多晶SiC- lpcvd工艺的理解,并为未来的应用提供量身定制的多晶SiC薄膜的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信