Printed Circuit Board Sample Expansion and Automatic Defect Detection Based on Diffusion Models and ConvNeXt.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-02-26 DOI:10.3390/mi16030261
Youzhi Xu, Hao Wu, Yulong Liu, Xiaoming Liu
{"title":"Printed Circuit Board Sample Expansion and Automatic Defect Detection Based on Diffusion Models and ConvNeXt.","authors":"Youzhi Xu, Hao Wu, Yulong Liu, Xiaoming Liu","doi":"10.3390/mi16030261","DOIUrl":null,"url":null,"abstract":"<p><p>Soldering of printed circuit board (PCB)-based surface-mounted assemblies is a critical process, and to enhance the accuracy of detecting their multi-targeted soldering defects, we propose an automated sample generation method that combines ControlNet and a Stable Diffusion Model. This method can expand the dataset by quickly obtaining sample images with high quality containing both defects and normal detection targets. Meanwhile, we propose the Cascade Mask R-CNN model with ConvNeXt as the backbone, which performs well in dealing with multi-target defect detection tasks. Unlike previous detection methods that can only detect a single component, it can detect all components in the region. The results of the experiment demonstrate that the detection accuracy of our proposed approach is significantly enhanced over the previous convolutional neural network model, with an increase of more than 10.5% in the mean accuracy precision (mAP) and 9.5% in the average recall (AR).</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944973/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030261","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Soldering of printed circuit board (PCB)-based surface-mounted assemblies is a critical process, and to enhance the accuracy of detecting their multi-targeted soldering defects, we propose an automated sample generation method that combines ControlNet and a Stable Diffusion Model. This method can expand the dataset by quickly obtaining sample images with high quality containing both defects and normal detection targets. Meanwhile, we propose the Cascade Mask R-CNN model with ConvNeXt as the backbone, which performs well in dealing with multi-target defect detection tasks. Unlike previous detection methods that can only detect a single component, it can detect all components in the region. The results of the experiment demonstrate that the detection accuracy of our proposed approach is significantly enhanced over the previous convolutional neural network model, with an increase of more than 10.5% in the mean accuracy precision (mAP) and 9.5% in the average recall (AR).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信