Photodynamic Inactivation of Bacteria in Boar Semen with Blue LED Light.

IF 4.1 2区 生物学 Q2 MICROBIOLOGY
Isabel Katharina Maaßen, Anne-Marie Luther, Mohammad Varzandeh, Steffen Hackbarth, Dagmar Waberski
{"title":"Photodynamic Inactivation of Bacteria in Boar Semen with Blue LED Light.","authors":"Isabel Katharina Maaßen, Anne-Marie Luther, Mohammad Varzandeh, Steffen Hackbarth, Dagmar Waberski","doi":"10.3390/microorganisms13030643","DOIUrl":null,"url":null,"abstract":"<p><p>The photodynamic inactivation (PDI) of bacteria is a promising alternative to antibiotics in boar semen extenders. It was recently established using the illumination of semen samples containing 2 µM of the photosensitizer 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine (TMPyP) with white LED light. High concentrations of TMPyP require strict sample handling in the dark to avoid uncontrolled photodynamic effects caused by ambient light. This study was designed to examine whether lower concentrations of PS could be utilized along with a narrow band blue LED light source, which aligns with TMPyP's Soret band, thereby minimizing light-induced disruption. A dose-response study with blue LED light exposure of sperm revealed no light toxicity. Importantly, substituting the established white light PDI with blue light illumination and 0.5 µM TMPyP resulted in robust antimicrobial efficiency and sperm compatibility in long-term stored semen samples. This modification led to the confirmation of the hypothesis that a diminished TMPyP concentration in concert with blue LED light facilitates semen handling in normal laboratory light while avoiding unintended light effects. In conclusion, this study plays a pivotal role in augmenting the practicality of the innovative PDI technology by establishing a method that is less susceptible to unanticipated effects of ambient light during sample management.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 3","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944377/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13030643","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The photodynamic inactivation (PDI) of bacteria is a promising alternative to antibiotics in boar semen extenders. It was recently established using the illumination of semen samples containing 2 µM of the photosensitizer 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine (TMPyP) with white LED light. High concentrations of TMPyP require strict sample handling in the dark to avoid uncontrolled photodynamic effects caused by ambient light. This study was designed to examine whether lower concentrations of PS could be utilized along with a narrow band blue LED light source, which aligns with TMPyP's Soret band, thereby minimizing light-induced disruption. A dose-response study with blue LED light exposure of sperm revealed no light toxicity. Importantly, substituting the established white light PDI with blue light illumination and 0.5 µM TMPyP resulted in robust antimicrobial efficiency and sperm compatibility in long-term stored semen samples. This modification led to the confirmation of the hypothesis that a diminished TMPyP concentration in concert with blue LED light facilitates semen handling in normal laboratory light while avoiding unintended light effects. In conclusion, this study plays a pivotal role in augmenting the practicality of the innovative PDI technology by establishing a method that is less susceptible to unanticipated effects of ambient light during sample management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信