Jung-Pin Lai, Shane Lin, Vito Lin, Andrew Kang, Yu-Po Wang, Ping-Feng Pai
{"title":"Predicting Thermal Resistance of Packaging Design by Machine Learning Models.","authors":"Jung-Pin Lai, Shane Lin, Vito Lin, Andrew Kang, Yu-Po Wang, Ping-Feng Pai","doi":"10.3390/mi16030350","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal analysis is an indispensable aspect of semiconductor packaging. Excessive operating temperatures in integrated circuit (IC) packages can degrade component performance and even cause failure. Therefore, thermal resistance and thermal characteristics are critical to the performance and reliability of electronic components. Machine learning modeling offers an effective way to predict the thermal performance of IC packages. In this study, data from finite element analysis (FEA) are utilized by machine learning models to predict thermal resistance during package testing. For two package types, namely the Quad Flat No-lead (QFN) and the Thin Fine-pitch Ball Grid Array (TFBGA), data derived from finite element analysis, are employed to predict thermal resistance. The thermal resistance values include θ<sub>JA</sub>, θ<sub>JB</sub>, θ<sub>JC</sub>, Ψ<sub>JT</sub>, and Ψ<sub>JB</sub>. Five machine learning models, namely the light gradient boosting machine (LGBM), random forest (RF), XGBoost (XGB), support vector regression (SVR), and multilayer perceptron regression (MLP), are applied as forecasting models in this study. Numerical results indicate that the XGBoost model outperforms the other models in terms of forecasting accuracy for almost all cases. Furthermore, the forecasting accuracy achieved by the XGBoost model is highly satisfactory. In conclusion, the XGBoost model shows significant promise as a reliable tool for predicting thermal resistance in packaging design. The application of machine learning techniques for forecasting these parameters could enhance the efficiency and reliability of IC packaging designs.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030350","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal analysis is an indispensable aspect of semiconductor packaging. Excessive operating temperatures in integrated circuit (IC) packages can degrade component performance and even cause failure. Therefore, thermal resistance and thermal characteristics are critical to the performance and reliability of electronic components. Machine learning modeling offers an effective way to predict the thermal performance of IC packages. In this study, data from finite element analysis (FEA) are utilized by machine learning models to predict thermal resistance during package testing. For two package types, namely the Quad Flat No-lead (QFN) and the Thin Fine-pitch Ball Grid Array (TFBGA), data derived from finite element analysis, are employed to predict thermal resistance. The thermal resistance values include θJA, θJB, θJC, ΨJT, and ΨJB. Five machine learning models, namely the light gradient boosting machine (LGBM), random forest (RF), XGBoost (XGB), support vector regression (SVR), and multilayer perceptron regression (MLP), are applied as forecasting models in this study. Numerical results indicate that the XGBoost model outperforms the other models in terms of forecasting accuracy for almost all cases. Furthermore, the forecasting accuracy achieved by the XGBoost model is highly satisfactory. In conclusion, the XGBoost model shows significant promise as a reliable tool for predicting thermal resistance in packaging design. The application of machine learning techniques for forecasting these parameters could enhance the efficiency and reliability of IC packaging designs.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.