Qing Niu, Kaixuan Yang, Zhenxiang Zhou, Qizhong Huang, Junliang Wang
{"title":"Intergenerational Transmission of Gut Microbiome from Infected and Non-Infected <i>Salmonella pullorum</i> Hens.","authors":"Qing Niu, Kaixuan Yang, Zhenxiang Zhou, Qizhong Huang, Junliang Wang","doi":"10.3390/microorganisms13030640","DOIUrl":null,"url":null,"abstract":"<p><p>Pullorum disease (PD) is one of the common infectious diseases in the poultry industry in the world. Our previous study showed that gut bacterial structure has a significant difference between positive and negative hens. However, the gut bacterial basis of intergenerational transmission of PD continues to elude a scientific explanation. The present study carried out fecal microbiota transplantation (FMT) in chicks of a negative group, then fecal samples of the chicks in the control team (CT), <i>Salmonella pullorum</i> (<i>S. pullorum</i>)-negative transplantation team (PN) and <i>S. pullorum</i>-positive transplantation team (PP) were separately collected to be analyzed for microbial structure and prediction functions. Microbial diversity results revealed that there was a large difference in the gut microbiota of these three groups. <i>Prevotella</i> and <i>Parasutterella</i> with higher abundance in PN (<i>p</i> < 0.05) were transplanted from gut bacteria of <i>S. pullorum</i>-negative hens. Furthermore, the differences of the most major microbial functions (top 100) were similar in hens and chicks, including a pentose phosphate pathway and oxidative phosphorylation. The data provided a reference for exploring the intergenerational transmission and genetic mechanisms of gut microbiota associated with <i>S. pullorum</i> in poultry, as well as a theoretical basis for improving intestinal health through the rational regulation of microbiota-host interactions.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 3","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946299/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13030640","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pullorum disease (PD) is one of the common infectious diseases in the poultry industry in the world. Our previous study showed that gut bacterial structure has a significant difference between positive and negative hens. However, the gut bacterial basis of intergenerational transmission of PD continues to elude a scientific explanation. The present study carried out fecal microbiota transplantation (FMT) in chicks of a negative group, then fecal samples of the chicks in the control team (CT), Salmonella pullorum (S. pullorum)-negative transplantation team (PN) and S. pullorum-positive transplantation team (PP) were separately collected to be analyzed for microbial structure and prediction functions. Microbial diversity results revealed that there was a large difference in the gut microbiota of these three groups. Prevotella and Parasutterella with higher abundance in PN (p < 0.05) were transplanted from gut bacteria of S. pullorum-negative hens. Furthermore, the differences of the most major microbial functions (top 100) were similar in hens and chicks, including a pentose phosphate pathway and oxidative phosphorylation. The data provided a reference for exploring the intergenerational transmission and genetic mechanisms of gut microbiota associated with S. pullorum in poultry, as well as a theoretical basis for improving intestinal health through the rational regulation of microbiota-host interactions.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.