{"title":"Gallium Nitride High Electron Mobility Transistor Device with Integrated On-Chip Array Junction Temperature Monitoring Unit.","authors":"Yukuan Chang, Yue Su, Mingke Xiao, Jiatao Wu, Xu Zhang, Hongda Chen","doi":"10.3390/mi16030304","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we present a novel method for junction temperature monitoring of GaN HEMT devices to achieve real-time temperature perception at different locations on the device surface. Through sputtering patterned Ti/Pt thermistor strips on the surface of a GaN HEMT device to construct an on-chip array junction temperature monitoring unit, the thermal distribution of the device during operation is fully reflected. The developed temperature monitoring unit exhibited a desirable temperature coefficient of resistance of 0.183%/°C in the range of 25 °C to 205 °C. Comparison with the thermal imager shows that the integrated temperature monitoring unit can accurately reflect the real-time temperature with a monitoring accuracy of more than 95%, which helps to improve the long-term reliability of GaN power devices under actual application conditions of high frequency and high power density.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945861/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030304","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we present a novel method for junction temperature monitoring of GaN HEMT devices to achieve real-time temperature perception at different locations on the device surface. Through sputtering patterned Ti/Pt thermistor strips on the surface of a GaN HEMT device to construct an on-chip array junction temperature monitoring unit, the thermal distribution of the device during operation is fully reflected. The developed temperature monitoring unit exhibited a desirable temperature coefficient of resistance of 0.183%/°C in the range of 25 °C to 205 °C. Comparison with the thermal imager shows that the integrated temperature monitoring unit can accurately reflect the real-time temperature with a monitoring accuracy of more than 95%, which helps to improve the long-term reliability of GaN power devices under actual application conditions of high frequency and high power density.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.