Effects of 450 MeV Kr Swift Heavy Ion Irradiation on GaN-Based Terahertz Schottky Barrier Diodes.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-02-28 DOI:10.3390/mi16030288
Yan Ren, Yongtao Yu, Shengze Zhou, Chao Pang, Yinle Li, Zhifeng Lei, Hong Zhang, Zhihong Feng, Xubo Song, Honghui Liu, Yongli Lou, Yiqiang Ni
{"title":"Effects of 450 MeV Kr Swift Heavy Ion Irradiation on GaN-Based Terahertz Schottky Barrier Diodes.","authors":"Yan Ren, Yongtao Yu, Shengze Zhou, Chao Pang, Yinle Li, Zhifeng Lei, Hong Zhang, Zhihong Feng, Xubo Song, Honghui Liu, Yongli Lou, Yiqiang Ni","doi":"10.3390/mi16030288","DOIUrl":null,"url":null,"abstract":"<p><p>GaN-based terahertz (THz) Schottky barrier diodes (SBDs) are critical components for achieving high-power performance in THz frequency multipliers. However, the space applications of GaN-based THz SBDs are significantly constrained due to insufficient research on the effects of space irradiation. This work investigates the effects of 450 MeV Kr swift heavy ion (SHI) irradiation on the electrical characteristics and induced defects in GaN-based THz SBDs. It was found that the high-frequency performance of GaN-based THz SBDs is highly sensitive to Kr SHI irradiation, which can be attributed to defects induced in the GaN epitaxial layer by the irradiation. Low-frequency noise analysis reveals trap states located at an energy level of approximately 0.62 eV below the conduction band. Moreover, the results from SRIM calculation and photoluminescence spectra confirmed the presence of irradiation-induced defects caused by Kr SHI irradiation.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944912/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030288","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

GaN-based terahertz (THz) Schottky barrier diodes (SBDs) are critical components for achieving high-power performance in THz frequency multipliers. However, the space applications of GaN-based THz SBDs are significantly constrained due to insufficient research on the effects of space irradiation. This work investigates the effects of 450 MeV Kr swift heavy ion (SHI) irradiation on the electrical characteristics and induced defects in GaN-based THz SBDs. It was found that the high-frequency performance of GaN-based THz SBDs is highly sensitive to Kr SHI irradiation, which can be attributed to defects induced in the GaN epitaxial layer by the irradiation. Low-frequency noise analysis reveals trap states located at an energy level of approximately 0.62 eV below the conduction band. Moreover, the results from SRIM calculation and photoluminescence spectra confirmed the presence of irradiation-induced defects caused by Kr SHI irradiation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信