{"title":"Optoelectronic Oscillator-Based Microwave Photonic 20× Frequency Multiplier with Low Phase Noise.","authors":"Shi Jia, Qifan Zhang, Tianhao Zhang, Jinlong Yu","doi":"10.3390/mi16030317","DOIUrl":null,"url":null,"abstract":"<p><p>This letter presents a scheme for obtaining a microwave photonic frequency multiplier with low phase noise, in which an optoelectronic oscillator (OEO) is integrated with a directly modulated laser (DML)-based injection-locking technique. The system achieves frequency multiplication factors of 10 and 20, producing 10.01009 and 19.99095 GHz microwave signals with high side-mode suppression ratios of 62.0 and 50.2 dB. The measured single-sideband phase noise values are -121.87 and -111.95 dBc/Hz@10 kHz, which are 34.9 and 31.0 dB lower than those of traditional electronic frequency multiplication methods for 1 GHz signals. By utilizing the nonlinear characteristics of the DML, combined with injection locking and the OEO system, this cost-effective scheme reduces the system complexity while enhancing the stability and phase noise performance, offering a highly efficient solution for microwave frequency multiplication.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944455/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030317","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents a scheme for obtaining a microwave photonic frequency multiplier with low phase noise, in which an optoelectronic oscillator (OEO) is integrated with a directly modulated laser (DML)-based injection-locking technique. The system achieves frequency multiplication factors of 10 and 20, producing 10.01009 and 19.99095 GHz microwave signals with high side-mode suppression ratios of 62.0 and 50.2 dB. The measured single-sideband phase noise values are -121.87 and -111.95 dBc/Hz@10 kHz, which are 34.9 and 31.0 dB lower than those of traditional electronic frequency multiplication methods for 1 GHz signals. By utilizing the nonlinear characteristics of the DML, combined with injection locking and the OEO system, this cost-effective scheme reduces the system complexity while enhancing the stability and phase noise performance, offering a highly efficient solution for microwave frequency multiplication.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.