Optimizing Tonpilz Transducer Transmission Through Impedance Matching and Head Mass Structure.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-03-20 DOI:10.3390/mi16030352
Yang Gou, Shenhai Ye, Xin Fu, Fanghua Zheng, Xuzhong Zha, Cong Li
{"title":"Optimizing Tonpilz Transducer Transmission Through Impedance Matching and Head Mass Structure.","authors":"Yang Gou, Shenhai Ye, Xin Fu, Fanghua Zheng, Xuzhong Zha, Cong Li","doi":"10.3390/mi16030352","DOIUrl":null,"url":null,"abstract":"<p><p>The bandwidth and output power of underwater acoustic transmitters are important for high-performance sonar detection systems. A mismatch between the impedance of the transducer and the transmitting circuit results in a low power factor, significantly limiting the sonar's operating bandwidth and detection range. In addition, the radial head structure of the Tonpilz transducer plays an important role in determining the radiation characteristics of the sound field. This paper proposes a new radiation head structure along with an impedance-matching network circuit. First, a mathematical model of active power is established based on the Krimholtz-Leedom-Matthaei (KLM) model of the transducer. The adaptive Gauss-Newton algorithm is then used to calculate the parameters of the broadband impedance-matching network components, ultimately determining the network parameters and the structure of the transducer's radiation head. Experimental results indicate that the transmitter voltage response of the proposed transducer is 6 dB higher than that of a conventional transducer and can be further increased by 5 dB with impedance matching. The impedance-matching network enhances the power factor of the transducer by 3.2 times, expands the frequency band by a factor of 1.6, and significantly enhances the acoustic field radiation characteristics of the underwater acoustic transducer.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030352","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The bandwidth and output power of underwater acoustic transmitters are important for high-performance sonar detection systems. A mismatch between the impedance of the transducer and the transmitting circuit results in a low power factor, significantly limiting the sonar's operating bandwidth and detection range. In addition, the radial head structure of the Tonpilz transducer plays an important role in determining the radiation characteristics of the sound field. This paper proposes a new radiation head structure along with an impedance-matching network circuit. First, a mathematical model of active power is established based on the Krimholtz-Leedom-Matthaei (KLM) model of the transducer. The adaptive Gauss-Newton algorithm is then used to calculate the parameters of the broadband impedance-matching network components, ultimately determining the network parameters and the structure of the transducer's radiation head. Experimental results indicate that the transmitter voltage response of the proposed transducer is 6 dB higher than that of a conventional transducer and can be further increased by 5 dB with impedance matching. The impedance-matching network enhances the power factor of the transducer by 3.2 times, expands the frequency band by a factor of 1.6, and significantly enhances the acoustic field radiation characteristics of the underwater acoustic transducer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信