Low Capillary Elastic Flow Model Optimization Using the Lattice Boltzmann Method and Non-Dominated Sorting Genetic Algorithm.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-02-28 DOI:10.3390/mi16030298
Yaqi Hou, Wei Zhang, Jiahua Hu, Feiyu Gao, Xuexue Zong
{"title":"Low Capillary Elastic Flow Model Optimization Using the Lattice Boltzmann Method and Non-Dominated Sorting Genetic Algorithm.","authors":"Yaqi Hou, Wei Zhang, Jiahua Hu, Feiyu Gao, Xuexue Zong","doi":"10.3390/mi16030298","DOIUrl":null,"url":null,"abstract":"<p><p>In simulations of elastic flow using the lattice Boltzmann method (LBM), the steady-state behavior of the flow at low capillary numbers is typically poor and prone to the formation of bubbles with inhomogeneous lengths. This phenomenon undermines the precise control of heat transfer, mass transfer, and reactions within microchannels and microreactors. This paper establishes an LBM multiphase flow model enhanced by machine learning. The hyperparameters of the machine learning model are optimized using the particle swarm algorithm. In contrast, the non-dominated sorting genetic algorithm (NSGA-II) is incorporated to optimize bubble lengths and stability. This results in a coupled multiphase flow numerical simulation model that integrates LBM, machine learning, and the particle swarm algorithm. Using this model, we investigate the influence of elastic flow parameters on bubble length and stability in a T-shaped microchannel. The simulation results demonstrate that the proposed LBM multiphase flow model can effectively predict bubble elongation rates under complex conditions. Furthermore, multi-objective optimization determines the optimal gas-liquid two-phase inlet flow rate relationship, significantly mitigating elastic flow instability at low capillary numbers. This approach enhances the controllability of the elastic flow process and improves the efficiency of mass and heat transfer.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030298","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In simulations of elastic flow using the lattice Boltzmann method (LBM), the steady-state behavior of the flow at low capillary numbers is typically poor and prone to the formation of bubbles with inhomogeneous lengths. This phenomenon undermines the precise control of heat transfer, mass transfer, and reactions within microchannels and microreactors. This paper establishes an LBM multiphase flow model enhanced by machine learning. The hyperparameters of the machine learning model are optimized using the particle swarm algorithm. In contrast, the non-dominated sorting genetic algorithm (NSGA-II) is incorporated to optimize bubble lengths and stability. This results in a coupled multiphase flow numerical simulation model that integrates LBM, machine learning, and the particle swarm algorithm. Using this model, we investigate the influence of elastic flow parameters on bubble length and stability in a T-shaped microchannel. The simulation results demonstrate that the proposed LBM multiphase flow model can effectively predict bubble elongation rates under complex conditions. Furthermore, multi-objective optimization determines the optimal gas-liquid two-phase inlet flow rate relationship, significantly mitigating elastic flow instability at low capillary numbers. This approach enhances the controllability of the elastic flow process and improves the efficiency of mass and heat transfer.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信