Xiaoying Zhu, Chaoxin Li, Xiaoman Liu, Yao Tong, Chang Liu, Kai Guo
{"title":"Design and Testing of a Portable Wireless Multi-Node sEMG System for Synchronous Muscle Signal Acquisition and Gesture Recognition.","authors":"Xiaoying Zhu, Chaoxin Li, Xiaoman Liu, Yao Tong, Chang Liu, Kai Guo","doi":"10.3390/mi16030279","DOIUrl":null,"url":null,"abstract":"<p><p>Surface electromyography (sEMG) is an important non-invasive method used in muscle function assessment, rehabilitation and human-machine interaction. However, existing commercial devices often lack sufficient channels, making it challenging to simultaneously acquire signals from multiple muscle sites.In this acticle, we design a portable multi-node sEMG acquisition system based on the TCP protocol to overcome the channel limitations of commercial sEMG detection devices. The system employs the STM32L442KCU6 microcontroller as the main control unit, with onboard ADC for analog-to-digital conversion of sEMG signals. Data filtered by analogy filter is transmitted via an ESP8266 WiFi module to the host computer for display and storage. By configuring Bluetooth broadcasting channels, the system can support up to 40 sEMG detection nodes. A gesture recognition algorithm is implemented to identify grasping motions with varying channel configurations. Experimental results demonstrate that with two channels, the Gradient Boosting Decision Tree (GBDT) algorithm achieves a recognition accuracy of 99.4%, effectively detecting grasping motions.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030279","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surface electromyography (sEMG) is an important non-invasive method used in muscle function assessment, rehabilitation and human-machine interaction. However, existing commercial devices often lack sufficient channels, making it challenging to simultaneously acquire signals from multiple muscle sites.In this acticle, we design a portable multi-node sEMG acquisition system based on the TCP protocol to overcome the channel limitations of commercial sEMG detection devices. The system employs the STM32L442KCU6 microcontroller as the main control unit, with onboard ADC for analog-to-digital conversion of sEMG signals. Data filtered by analogy filter is transmitted via an ESP8266 WiFi module to the host computer for display and storage. By configuring Bluetooth broadcasting channels, the system can support up to 40 sEMG detection nodes. A gesture recognition algorithm is implemented to identify grasping motions with varying channel configurations. Experimental results demonstrate that with two channels, the Gradient Boosting Decision Tree (GBDT) algorithm achieves a recognition accuracy of 99.4%, effectively detecting grasping motions.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.