Design and Simulation of Magnetic Shielding Structure Based on Closed-Loop TMR Current Sensor.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-02-27 DOI:10.3390/mi16030272
Qiuyang Li, Suqin Xiong, Shuo Wang, Xianguang Dong, Haifeng Zhang
{"title":"Design and Simulation of Magnetic Shielding Structure Based on Closed-Loop TMR Current Sensor.","authors":"Qiuyang Li, Suqin Xiong, Shuo Wang, Xianguang Dong, Haifeng Zhang","doi":"10.3390/mi16030272","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of current sensor technology, tunnel magnetoresistance (TMR) current sensors have been widely adopted in industrial detection due to their high sensitivity, excellent linearity, and broad measurement range. This study focuses on closed-loop TMR current sensors, utilizing COMSOL Multiphysics 6.2 software and the finite element method to conduct an in-depth analysis of structural parameters affecting sensor sensitivity. A novel magnetic shielding package architecture is proposed and designed. Simulation results demonstrate that the shielding efficiency of this structure improves by 44.3% compared to a single magnetic ring under a stray magnetic field of 0.1 mT along the sensing axis. At the same time, the measurement accuracy is 2.1 times higher than that of traditional structures. Current detection experiments conducted in a strong magnetic field environment further validate that the shielding package effectively suppresses external electromagnetic interference, significantly enhancing sensor stability and measurement accuracy. This research provides important theoretical and practical insights for applying high-precision TMR current sensors in complex electromagnetic environments.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944719/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030272","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of current sensor technology, tunnel magnetoresistance (TMR) current sensors have been widely adopted in industrial detection due to their high sensitivity, excellent linearity, and broad measurement range. This study focuses on closed-loop TMR current sensors, utilizing COMSOL Multiphysics 6.2 software and the finite element method to conduct an in-depth analysis of structural parameters affecting sensor sensitivity. A novel magnetic shielding package architecture is proposed and designed. Simulation results demonstrate that the shielding efficiency of this structure improves by 44.3% compared to a single magnetic ring under a stray magnetic field of 0.1 mT along the sensing axis. At the same time, the measurement accuracy is 2.1 times higher than that of traditional structures. Current detection experiments conducted in a strong magnetic field environment further validate that the shielding package effectively suppresses external electromagnetic interference, significantly enhancing sensor stability and measurement accuracy. This research provides important theoretical and practical insights for applying high-precision TMR current sensors in complex electromagnetic environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信