{"title":"Investigation of Transient Thermal Behavior in Thyristors Under Pulse Conditions.","authors":"Guanxiang Zhang, Xiao Zhang, Junyong Lu, Yufeng Dai, Tao Ma, Bofeng Zhu","doi":"10.3390/mi16030291","DOIUrl":null,"url":null,"abstract":"<p><p>Under pulsed discharge conditions, high-power thyristors face challenges such as an excessively high current rise rate (di/dt) and the issue of triggering front expansion, which are difficult to accurately simulate. Traditional modeling approaches often neglect the non-uniform distribution and expansion process of the internal current within the silicon wafer. In this study, we address these limitations by incorporating these critical factors into our analysis. Using a two-dimensional device-circuit co-simulation approach, we investigate the current, temperature, and thermal power distribution within the thyristor during the turn-on process under pulsed discharge conditions. Based on the simulation results, we derive the velocity equation governing the transverse expansion of the thyristor current. Furthermore, we establish a three-dimensional finite element model of the thyristor and develop a generalized extended model for complex gate structures. These models enable us to obtain the transient temperature distribution during the thyristor turn-on process under pulsed conditions. Finally, we conduct cycle surge life tests on various types of thyristors, providing valuable insights for the selection and optimization of thyristors designed for pulsed applications.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944675/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030291","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Under pulsed discharge conditions, high-power thyristors face challenges such as an excessively high current rise rate (di/dt) and the issue of triggering front expansion, which are difficult to accurately simulate. Traditional modeling approaches often neglect the non-uniform distribution and expansion process of the internal current within the silicon wafer. In this study, we address these limitations by incorporating these critical factors into our analysis. Using a two-dimensional device-circuit co-simulation approach, we investigate the current, temperature, and thermal power distribution within the thyristor during the turn-on process under pulsed discharge conditions. Based on the simulation results, we derive the velocity equation governing the transverse expansion of the thyristor current. Furthermore, we establish a three-dimensional finite element model of the thyristor and develop a generalized extended model for complex gate structures. These models enable us to obtain the transient temperature distribution during the thyristor turn-on process under pulsed conditions. Finally, we conduct cycle surge life tests on various types of thyristors, providing valuable insights for the selection and optimization of thyristors designed for pulsed applications.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.