Cosserat Rod-Based Tendon Friction Modeling, Simulation, and Experiments for Tendon-Driven Continuum Robots.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-03-19 DOI:10.3390/mi16030346
Honghong Wang, Jingli Du, Yi Mao
{"title":"Cosserat Rod-Based Tendon Friction Modeling, Simulation, and Experiments for Tendon-Driven Continuum Robots.","authors":"Honghong Wang, Jingli Du, Yi Mao","doi":"10.3390/mi16030346","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional tendon-driven continuum robot (TDCR) models based on Cosserat rod theory often assume that tendon tension is a continuous wrench along the backbone. However, this assumption overlooks critical factors, including the discrete arrangement of disks, the segmented configuration of tensioned tendons, and the friction between tendons and guide holes. Additionally, tendon forces are not continuous but discrete, concentrated wrenches, with the frictional force magnitude and direction varying based on the TDCR's bending configuration. We propose a TDCR modeling method that integrates Cosserat rod theory with a finite element approach to address these limitations. We construct a Cosserat rod model for the robot's backbone, discretize the tendon geometry using the finite element method (FEM), and incorporate friction modeling between tendons and guide holes. Furthermore, we introduce an algorithm to determine the direction of friction forces, enhancing modeling accuracy. This approach results in a more realistic and comprehensive mathematical representation of TDCR behavior. Numerical simulations under various tendon-routing scenarios are conducted and compared with classical TDCR models. The results indicate that our friction-inclusive model improves accuracy, yielding an average configuration deviation of only 0.3% across different tendon routings. Experimental validation further confirms the model's accuracy and robustness.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030346","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional tendon-driven continuum robot (TDCR) models based on Cosserat rod theory often assume that tendon tension is a continuous wrench along the backbone. However, this assumption overlooks critical factors, including the discrete arrangement of disks, the segmented configuration of tensioned tendons, and the friction between tendons and guide holes. Additionally, tendon forces are not continuous but discrete, concentrated wrenches, with the frictional force magnitude and direction varying based on the TDCR's bending configuration. We propose a TDCR modeling method that integrates Cosserat rod theory with a finite element approach to address these limitations. We construct a Cosserat rod model for the robot's backbone, discretize the tendon geometry using the finite element method (FEM), and incorporate friction modeling between tendons and guide holes. Furthermore, we introduce an algorithm to determine the direction of friction forces, enhancing modeling accuracy. This approach results in a more realistic and comprehensive mathematical representation of TDCR behavior. Numerical simulations under various tendon-routing scenarios are conducted and compared with classical TDCR models. The results indicate that our friction-inclusive model improves accuracy, yielding an average configuration deviation of only 0.3% across different tendon routings. Experimental validation further confirms the model's accuracy and robustness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信