Composite Magnetic Filaments: From Fabrication to Magnetic Hyperthermia Application.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-03-12 DOI:10.3390/mi16030328
Athanasios Alexandridis, Apostolos Argyros, Pavlos Kyriazopoulos, Ioannis Genitseftsis, Nikiforos Okkalidis, Nikolaos Michailidis, Makis Angelakeris, Antonios Makridis
{"title":"Composite Magnetic Filaments: From Fabrication to Magnetic Hyperthermia Application.","authors":"Athanasios Alexandridis, Apostolos Argyros, Pavlos Kyriazopoulos, Ioannis Genitseftsis, Nikiforos Okkalidis, Nikolaos Michailidis, Makis Angelakeris, Antonios Makridis","doi":"10.3390/mi16030328","DOIUrl":null,"url":null,"abstract":"<p><p>The printing of composite magnetic filaments using additive manufacturing techniques has emerged as a promising approach for biomedical applications, particularly in bone tissue engineering and magnetic hyperthermia treatments. This study focuses on the synthesis of nanocomposite ferromagnetic filaments and the fabrication of bone tissue scaffolds with time-dependent properties. Three classes of polylactic acid-based biocompatible polymers-EasyFil, Tough and Premium-were combined with magnetite nanoparticles (Fe<sub>3</sub>O<sub>4</sub>) at concentrations of 10 wt% and 20 wt%. Extruded filaments were evaluated for microstructural integrity, printed dog-bone-shaped specimens were tested for elongation and mechanical properties, and cylindrical scaffolds were analyzed for magnetic hyperthermia performance. The tensile strength of EasyFil polylactic acid decreased from 1834 MPa (0 wt% Fe<sub>3</sub>O<sub>4</sub>) to 1130 MPa (-38%) at 20 wt% Fe<sub>3</sub>O<sub>4</sub>, while Premium polylactic acid showed a more moderate reduction from 1800 MPa to 1567 MPa (-13%). The elongation at break was reduced across all samples, with the highest decrease observed in EasyFil polylactic acid (from 42% to 26%, -38%). Magnetic hyperthermia performance, measured by the specific absorption rate, demonstrated that the 20 wt% Fe<sub>3</sub>O<sub>4</sub> scaffolds achieved specific absorption rate values of 2-7.5 W/g, depending on polymer type. Our results show that by carefully selecting the right thermoplastic material, we can balance both mechanical integrity and thermal efficiency. Among the tested materials, Tough polylactic acid composites demonstrated the most promising potential for magnetic hyperthermia applications, providing optimal heating performance without significantly compromising scaffold strength. These findings offer critical insights into designing magnetic scaffolds optimized for tissue regeneration and hyperthermia-based therapies.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030328","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The printing of composite magnetic filaments using additive manufacturing techniques has emerged as a promising approach for biomedical applications, particularly in bone tissue engineering and magnetic hyperthermia treatments. This study focuses on the synthesis of nanocomposite ferromagnetic filaments and the fabrication of bone tissue scaffolds with time-dependent properties. Three classes of polylactic acid-based biocompatible polymers-EasyFil, Tough and Premium-were combined with magnetite nanoparticles (Fe3O4) at concentrations of 10 wt% and 20 wt%. Extruded filaments were evaluated for microstructural integrity, printed dog-bone-shaped specimens were tested for elongation and mechanical properties, and cylindrical scaffolds were analyzed for magnetic hyperthermia performance. The tensile strength of EasyFil polylactic acid decreased from 1834 MPa (0 wt% Fe3O4) to 1130 MPa (-38%) at 20 wt% Fe3O4, while Premium polylactic acid showed a more moderate reduction from 1800 MPa to 1567 MPa (-13%). The elongation at break was reduced across all samples, with the highest decrease observed in EasyFil polylactic acid (from 42% to 26%, -38%). Magnetic hyperthermia performance, measured by the specific absorption rate, demonstrated that the 20 wt% Fe3O4 scaffolds achieved specific absorption rate values of 2-7.5 W/g, depending on polymer type. Our results show that by carefully selecting the right thermoplastic material, we can balance both mechanical integrity and thermal efficiency. Among the tested materials, Tough polylactic acid composites demonstrated the most promising potential for magnetic hyperthermia applications, providing optimal heating performance without significantly compromising scaffold strength. These findings offer critical insights into designing magnetic scaffolds optimized for tissue regeneration and hyperthermia-based therapies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信