Liang Lu, Minghao Yin, Wanqiu Xia, Musaab Suliman, Lei Wang
{"title":"Identifying All Internal Forces in Existing Reinforced Concrete Components Using the Stress Release Method.","authors":"Liang Lu, Minghao Yin, Wanqiu Xia, Musaab Suliman, Lei Wang","doi":"10.3390/ma18061300","DOIUrl":null,"url":null,"abstract":"<p><p>The internal force state in concrete components is a crucial factor in evaluating the safety performance of existing buildings, bridges, and other concrete structures, while theoretical and numerical analysis of an ideal model may not accurately capture the actual internal forces within concrete components. This study introduces the basic principles of stress release technology for identifying internal forces in existing reinforced concrete components and provides a detailed derivation of normal and shear strains of component sections under each internal force component. It demonstrates that the internal forces of reinforced concrete sections can be accurately identified by testing the strain on the midpoint of three surface sides. A finite element model is established to investigate the relationship between groove depth and groove side length when normal or shear stress is released to zero, as well as the impact of reinforcement ratio on the stress release level. Experimental research is conducted using the grooving method to identify internal forces in reinforced concrete components under different external loads. The test results exhibit strong agreement with numerical simulation results. Additionally, the identification errors for axial forces and bending moments are within 10%, underscoring the feasibility of measuring internal forces in existing reinforced concrete components through the stress release method.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061300","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The internal force state in concrete components is a crucial factor in evaluating the safety performance of existing buildings, bridges, and other concrete structures, while theoretical and numerical analysis of an ideal model may not accurately capture the actual internal forces within concrete components. This study introduces the basic principles of stress release technology for identifying internal forces in existing reinforced concrete components and provides a detailed derivation of normal and shear strains of component sections under each internal force component. It demonstrates that the internal forces of reinforced concrete sections can be accurately identified by testing the strain on the midpoint of three surface sides. A finite element model is established to investigate the relationship between groove depth and groove side length when normal or shear stress is released to zero, as well as the impact of reinforcement ratio on the stress release level. Experimental research is conducted using the grooving method to identify internal forces in reinforced concrete components under different external loads. The test results exhibit strong agreement with numerical simulation results. Additionally, the identification errors for axial forces and bending moments are within 10%, underscoring the feasibility of measuring internal forces in existing reinforced concrete components through the stress release method.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.