Collaborative Heterogeneous Mini-Robotic 3D Printer for Manufacturing Complex Food Structures with Multiple Inks and Curved Deposition Surfaces.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-02-26 DOI:10.3390/mi16030264
Karen Jazmin Mendoza-Bautista, Mariana S Flores-Jimenez, Laisha Daniela Vázquez Tejeda Serrano, Grissel Trujillo de Santiago, Mario Moises Alvarez, Arturo Molina, Mariel Alfaro-Ponce, Isaac Chairez
{"title":"Collaborative Heterogeneous Mini-Robotic 3D Printer for Manufacturing Complex Food Structures with Multiple Inks and Curved Deposition Surfaces.","authors":"Karen Jazmin Mendoza-Bautista, Mariana S Flores-Jimenez, Laisha Daniela Vázquez Tejeda Serrano, Grissel Trujillo de Santiago, Mario Moises Alvarez, Arturo Molina, Mariel Alfaro-Ponce, Isaac Chairez","doi":"10.3390/mi16030264","DOIUrl":null,"url":null,"abstract":"<p><p>The necessity of developing more realistic artificial food requires the aggregation of different biomaterials in an ordered and controlled manner. One of the most advanced methods for this is food printers reproducing additive manufacturing processes. This study presents a fully automatized 3D food printer leveraging collaborative Cartesian and multi-ink robotic systems to create complex food structures, with materials with different rheological settings using a screw conveyor configuration with controlled motion velocity. The developed food printer followed a formal mechatronic design strategy with fully functional instrumentation and automation systems. An adaptive controller was developed and implemented to regulate the coordinated operation of booth robotic devices, which are enforced by the G-code corresponding to the target food structure, leading to the necessary resolution. This device was tested with different commercial food inks to develop structures with complex shapes. The workability of the developed printer was confirmed by examining the food samples obtained using multiple materials, including creating different three-dimensional structures of a single complex food ink and creating simple structures made of different food inks with diverse structures that could yield a synthetic tissue that reproduces synthetic meat.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030264","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The necessity of developing more realistic artificial food requires the aggregation of different biomaterials in an ordered and controlled manner. One of the most advanced methods for this is food printers reproducing additive manufacturing processes. This study presents a fully automatized 3D food printer leveraging collaborative Cartesian and multi-ink robotic systems to create complex food structures, with materials with different rheological settings using a screw conveyor configuration with controlled motion velocity. The developed food printer followed a formal mechatronic design strategy with fully functional instrumentation and automation systems. An adaptive controller was developed and implemented to regulate the coordinated operation of booth robotic devices, which are enforced by the G-code corresponding to the target food structure, leading to the necessary resolution. This device was tested with different commercial food inks to develop structures with complex shapes. The workability of the developed printer was confirmed by examining the food samples obtained using multiple materials, including creating different three-dimensional structures of a single complex food ink and creating simple structures made of different food inks with diverse structures that could yield a synthetic tissue that reproduces synthetic meat.

协同异构微型机器人3D打印机用于制造具有多种油墨和弯曲沉积表面的复杂食品结构。
开发更现实的人工食品的必要性要求以有序和可控的方式聚集不同的生物材料。最先进的方法之一是食品打印机复制增材制造过程。本研究提出了一种全自动3D食品打印机,利用协同笛卡尔和多墨水机器人系统来创建复杂的食品结构,使用具有不同流变设置的材料,使用具有控制运动速度的螺旋输送机配置。开发的食品打印机遵循正式的机电一体化设计策略,具有功能齐全的仪器和自动化系统。开发并实现了一种自适应控制器,用于调节展台机器人设备的协调运行,并通过与目标食品结构相对应的g代码强制执行,从而获得必要的分辨率。该装置用不同的商业食品油墨进行了测试,以开发具有复杂形状的结构。通过检查使用多种材料获得的食品样品,包括创建单一复杂食品油墨的不同三维结构,以及创建由不同结构的不同食品油墨制成的简单结构,从而可以生成再生合成肉的合成组织,从而证实了所开发打印机的可操作性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信