Vitamin D3 and its active form calcitriol suppress erythroleukemia through upregulation of CHAC1 and downregulation of NOTCH1.

IF 2.8 4区 医学 Q2 ONCOLOGY
Jiankun Hong, Zhongyou Yang, Jian Gao, Kunlin Yu, Anling Hu, Yi Kuang, Babu Gajendran, Eldad Zacksenhaus, Xiao Xiao, Chunlin Wang, Wuling Liu, Yaacov Ben-David
{"title":"Vitamin D3 and its active form calcitriol suppress erythroleukemia through upregulation of CHAC1 and downregulation of NOTCH1.","authors":"Jiankun Hong, Zhongyou Yang, Jian Gao, Kunlin Yu, Anling Hu, Yi Kuang, Babu Gajendran, Eldad Zacksenhaus, Xiao Xiao, Chunlin Wang, Wuling Liu, Yaacov Ben-David","doi":"10.1007/s12032-025-02695-4","DOIUrl":null,"url":null,"abstract":"<p><p>Vitamin D3 (VD3) and its active form calcitriol (Ca) exhibit anti-neoplastic activity against several types of cancer, although the underlying mechanism is not fully understood. Herein, we tested the effects of VD3 and Ca on erythro-leukemogenesis and investigated the underlying mechanism. VD3 and Ca treatment strongly inhibited cancer progression in a mouse model of erythroleukemia induced by the Friend virus. In tissue culture, VD3 and Ca inhibited proliferation of leukemic cell lines. Growth inhibition was associated with induction of G1 phase cell cycle arrest and apoptosis. Transcription of the VD3 receptor, VDR, is strongly induced by Ca, but not VDR. However, leukemia growth suppression by both VD3 and Ca is shown to be independent of VDR. In leukemic cells, both VD3 and Ca induced genes associated with metabolic pathways. Both VD3 and Ca induce the cytosolic glutathione degradase CHAC1 through activation of the ER stress response pathway ATF3/ATF4/CHOP genes. Higher expression of CHAC1 also suppressed the oncogene NOTCH1. Accordingly, knockdown of CHAC1 antagonized the inhibitory effect of VD3 and Ca on leukemic growth leading to higher NOTCH1 expression. Conversely, overexpression of CHAC1 suppressed leukemia cell growth and inhibited the expression of NOTCH1. Additionally, glutathione antagonized leukemia cell suppression induced by VD3 and Ca, demonstrating that this vitamin inhibits the proliferation of leukemic cells via CHAC1. Taken together, our results demonstrated that VD3 and Ca can prolong the survival of leukemia mice and inhibit the proliferation of erythroleukemia cell HEL through CHAC1 or CHAC1-mediated NOTCH1 inhibition.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 5","pages":"138"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-025-02695-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vitamin D3 (VD3) and its active form calcitriol (Ca) exhibit anti-neoplastic activity against several types of cancer, although the underlying mechanism is not fully understood. Herein, we tested the effects of VD3 and Ca on erythro-leukemogenesis and investigated the underlying mechanism. VD3 and Ca treatment strongly inhibited cancer progression in a mouse model of erythroleukemia induced by the Friend virus. In tissue culture, VD3 and Ca inhibited proliferation of leukemic cell lines. Growth inhibition was associated with induction of G1 phase cell cycle arrest and apoptosis. Transcription of the VD3 receptor, VDR, is strongly induced by Ca, but not VDR. However, leukemia growth suppression by both VD3 and Ca is shown to be independent of VDR. In leukemic cells, both VD3 and Ca induced genes associated with metabolic pathways. Both VD3 and Ca induce the cytosolic glutathione degradase CHAC1 through activation of the ER stress response pathway ATF3/ATF4/CHOP genes. Higher expression of CHAC1 also suppressed the oncogene NOTCH1. Accordingly, knockdown of CHAC1 antagonized the inhibitory effect of VD3 and Ca on leukemic growth leading to higher NOTCH1 expression. Conversely, overexpression of CHAC1 suppressed leukemia cell growth and inhibited the expression of NOTCH1. Additionally, glutathione antagonized leukemia cell suppression induced by VD3 and Ca, demonstrating that this vitamin inhibits the proliferation of leukemic cells via CHAC1. Taken together, our results demonstrated that VD3 and Ca can prolong the survival of leukemia mice and inhibit the proliferation of erythroleukemia cell HEL through CHAC1 or CHAC1-mediated NOTCH1 inhibition.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Oncology
Medical Oncology 医学-肿瘤学
CiteScore
4.20
自引率
2.90%
发文量
259
审稿时长
1.4 months
期刊介绍: Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信