{"title":"Back Propagation Neural Network-Based Predictive Model for Magnetorheological-Chemical Polishing of Silicon Carbide.","authors":"Huazhuo Liang, Wenjie Chen, Youzhi Fu, Wenjie Zhou, Ling Mo, Yue Jian, Qi Wen, Dawei Liu, Junfeng He","doi":"10.3390/mi16030271","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetorheological-chemical-polishing tests are carried out on single-crystal silicon carbide (SiC) to study the influence of the process parameters on the polishing effect, predict the polishing results via a back propagation (BP) neural network, and construct a model of the processing parameters to predict the material removal rate (MRR) and surface quality. Magnetorheological-chemical polishing employs mechanical removal coupled with chemical action, and the synergistic effect of both actions can achieve an improved polishing effect. The results show that with increasing abrasive particle size, hydrogen peroxide concentration, workpiece rotational speed, and polishing disc rotational speed, the MRR first increases and then decreases. With an increasing abrasive concentration and carbonyl iron powder concentration, the MRR continues to increase. With an increasing machining gap, the MRR shows a continuous decrease, and the corresponding changes in surface roughness tend to decrease first and then increase. The prediction models of the MRR and surface quality are constructed via a BP neural network, and their average absolute percentage errors are less than 2%, which is important for the online monitoring of processing and process optimisation.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030271","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetorheological-chemical-polishing tests are carried out on single-crystal silicon carbide (SiC) to study the influence of the process parameters on the polishing effect, predict the polishing results via a back propagation (BP) neural network, and construct a model of the processing parameters to predict the material removal rate (MRR) and surface quality. Magnetorheological-chemical polishing employs mechanical removal coupled with chemical action, and the synergistic effect of both actions can achieve an improved polishing effect. The results show that with increasing abrasive particle size, hydrogen peroxide concentration, workpiece rotational speed, and polishing disc rotational speed, the MRR first increases and then decreases. With an increasing abrasive concentration and carbonyl iron powder concentration, the MRR continues to increase. With an increasing machining gap, the MRR shows a continuous decrease, and the corresponding changes in surface roughness tend to decrease first and then increase. The prediction models of the MRR and surface quality are constructed via a BP neural network, and their average absolute percentage errors are less than 2%, which is important for the online monitoring of processing and process optimisation.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.