{"title":"How the Pretreatment Temperature of Zeolitic Catalysts Can Affect the Reaction Temperature of Methanol to Olefins and Gasoline Processes.","authors":"Simón Yunes, Abel Gaspar Rosas, Antonio Gil","doi":"10.3390/ma18061370","DOIUrl":null,"url":null,"abstract":"<p><p>The dehydration of methanol to produce light olefins and gasoline, known as MTO (methanol-to-olefins) process requires acidic catalysts that maintain their acidity at reaction temperatures. Zeolites, such as SAPOs and ZSM-5, are commonly used for this purpose due to their acidic centers. The initial step in these experiments involves the activation or pretreatment of these solids to remove physically adsorbed water from their pores. Inadequate pretreatment can lead to the destruction of the existing Brönsted sites through the dihydroxylation of surface -OH groups. Therefore, it is crucial to pretreat the zeolites properly to preserve the Brönsted sites. One method is to subject the fresh catalyst to programmed dehydration, which involves desorption at a controlled temperature while monitoring the appearance of water that results from Brönsted site dihydroxylation. The temperature at which the dehydration peak appears determines the optimal reaction temperature. The results presented in this work will demonstrate the progressive deactivation of the catalysts when the reaction temperature exceeds 400 °C.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061370","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dehydration of methanol to produce light olefins and gasoline, known as MTO (methanol-to-olefins) process requires acidic catalysts that maintain their acidity at reaction temperatures. Zeolites, such as SAPOs and ZSM-5, are commonly used for this purpose due to their acidic centers. The initial step in these experiments involves the activation or pretreatment of these solids to remove physically adsorbed water from their pores. Inadequate pretreatment can lead to the destruction of the existing Brönsted sites through the dihydroxylation of surface -OH groups. Therefore, it is crucial to pretreat the zeolites properly to preserve the Brönsted sites. One method is to subject the fresh catalyst to programmed dehydration, which involves desorption at a controlled temperature while monitoring the appearance of water that results from Brönsted site dihydroxylation. The temperature at which the dehydration peak appears determines the optimal reaction temperature. The results presented in this work will demonstrate the progressive deactivation of the catalysts when the reaction temperature exceeds 400 °C.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.