Formation of Ultrafine-Grained Dual-Phase Microstructure by Warm Deformation of Austenite in High-Strength Steel.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-03-18 DOI:10.3390/ma18061341
Wen Shu, Yingqi Fan, Rengeng Li, Qing Liu, Qingquan Lai
{"title":"Formation of Ultrafine-Grained Dual-Phase Microstructure by Warm Deformation of Austenite in High-Strength Steel.","authors":"Wen Shu, Yingqi Fan, Rengeng Li, Qing Liu, Qingquan Lai","doi":"10.3390/ma18061341","DOIUrl":null,"url":null,"abstract":"<p><p>Thermomechanical processing by applying deformation-induced ferrite transformation (DIFT) is an effective method of producing ultrafine-grained (UFG) ferritic steels, which usually present high yield strength but low strain hardening. In this study, we explored the concept of DIFT in the processing of UFG dual-phase (DP) steel, in order to improve its strain hardening capability and thus its ductility. The processing temperature was reduced to enhance the dislocation storage in austenite. It was found that the warm deformation of austenite induced a dramatic occurrence of DIFT, resulting in the formation of UFG-DP microstructures along the whole thickness of the specimen. In the UFG-DP microstructure, the average ferrite grain size was 1.2 μm and the ferrite volume fraction was 44 vol.%. The observation of twinned martensite suggests the occurrence of carbon partitioning during the DIFT process. The UFG-DP microstructure exhibited a good combination of strength and ductility, which was enabled by the synergy of the ultrafine ferrite grains and the efficient composite effect. The outcome of this study provides a novel pathway to develop advanced hot-rolled steels with a UFG-DP microstructure and which are associated with the advantages of their readiness to be scaled up and low costs.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061341","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thermomechanical processing by applying deformation-induced ferrite transformation (DIFT) is an effective method of producing ultrafine-grained (UFG) ferritic steels, which usually present high yield strength but low strain hardening. In this study, we explored the concept of DIFT in the processing of UFG dual-phase (DP) steel, in order to improve its strain hardening capability and thus its ductility. The processing temperature was reduced to enhance the dislocation storage in austenite. It was found that the warm deformation of austenite induced a dramatic occurrence of DIFT, resulting in the formation of UFG-DP microstructures along the whole thickness of the specimen. In the UFG-DP microstructure, the average ferrite grain size was 1.2 μm and the ferrite volume fraction was 44 vol.%. The observation of twinned martensite suggests the occurrence of carbon partitioning during the DIFT process. The UFG-DP microstructure exhibited a good combination of strength and ductility, which was enabled by the synergy of the ultrafine ferrite grains and the efficient composite effect. The outcome of this study provides a novel pathway to develop advanced hot-rolled steels with a UFG-DP microstructure and which are associated with the advantages of their readiness to be scaled up and low costs.

高强钢中奥氏体热变形形成超细晶双相组织
形变诱导铁素体相变(DIFT)是制备超细晶铁素体钢的一种有效方法,该钢具有高屈服强度和低应变硬化的特点。在本研究中,我们在UFG双相(DP)钢的加工中探索了DIFT的概念,以提高其应变硬化能力,从而提高其延展性。降低加工温度,促进位错在奥氏体中的储存。结果表明,奥氏体的热变形引起了大量的DIFT,导致沿试样整个厚度形成UFG-DP显微组织。在UFG-DP显微组织中,铁素体的平均晶粒尺寸为1.2 μm,体积分数为44 vol.%。孪晶马氏体的观察表明,在DIFT过程中发生了碳分配。超细铁素体晶粒与高效复合效应的协同作用,使UFG-DP微观组织表现出良好的强度和塑性结合。这项研究的结果为开发具有UFG-DP微观结构的先进热轧钢提供了一条新途径,并具有可按比例放大和低成本的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信