{"title":"Design, Fabrication, and Application of Large-Area Flexible Pressure and Strain Sensor Arrays: A Review.","authors":"Xikuan Zhang, Jin Chai, Yongfu Zhan, Danfeng Cui, Xin Wang, Libo Gao","doi":"10.3390/mi16030330","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development of flexible sensor technology has made flexible sensor arrays a key research area in various applications due to their exceptional flexibility, wearability, and large-area-sensing capabilities. These arrays can precisely monitor physical parameters like pressure and strain in complex environments, making them highly beneficial for sectors such as smart wearables, robotic tactile sensing, health monitoring, and flexible electronics. This paper reviews the fabrication processes, operational principles, and common materials used in flexible sensors, explores the application of different materials, and outlines two conventional preparation methods. It also presents real-world examples of large-area pressure and strain sensor arrays. Fabrication techniques include 3D printing, screen printing, laser etching, magnetron sputtering, and molding, each influencing sensor performance in different ways. Flexible sensors typically operate based on resistive and capacitive mechanisms, with their structural designs (e.g., sandwich and fork-finger) affecting integration, recovery, and processing complexity. The careful selection of materials-especially substrates, electrodes, and sensing materials-is crucial for sensor efficacy. Despite significant progress in design and application, challenges remain, particularly in mass production, wireless integration, real-time data processing, and long-term stability. To improve mass production feasibility, optimizing fabrication processes, reducing material costs, and incorporating automated production lines are essential for scalability and defect reduction. For wireless integration, enhancing energy efficiency through low-power communication protocols and addressing signal interference and stability are critical for seamless operation. Real-time data processing requires innovative solutions such as edge computing and machine learning algorithms, ensuring low-latency, high-accuracy data interpretation while preserving the flexibility of sensor arrays. Finally, ensuring long-term stability and environmental adaptability demands new materials and protective coatings to withstand harsh conditions. Ongoing research and development are crucial to overcoming these challenges, ensuring that flexible sensor arrays meet the needs of diverse applications while remaining cost-effective and reliable.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030330","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of flexible sensor technology has made flexible sensor arrays a key research area in various applications due to their exceptional flexibility, wearability, and large-area-sensing capabilities. These arrays can precisely monitor physical parameters like pressure and strain in complex environments, making them highly beneficial for sectors such as smart wearables, robotic tactile sensing, health monitoring, and flexible electronics. This paper reviews the fabrication processes, operational principles, and common materials used in flexible sensors, explores the application of different materials, and outlines two conventional preparation methods. It also presents real-world examples of large-area pressure and strain sensor arrays. Fabrication techniques include 3D printing, screen printing, laser etching, magnetron sputtering, and molding, each influencing sensor performance in different ways. Flexible sensors typically operate based on resistive and capacitive mechanisms, with their structural designs (e.g., sandwich and fork-finger) affecting integration, recovery, and processing complexity. The careful selection of materials-especially substrates, electrodes, and sensing materials-is crucial for sensor efficacy. Despite significant progress in design and application, challenges remain, particularly in mass production, wireless integration, real-time data processing, and long-term stability. To improve mass production feasibility, optimizing fabrication processes, reducing material costs, and incorporating automated production lines are essential for scalability and defect reduction. For wireless integration, enhancing energy efficiency through low-power communication protocols and addressing signal interference and stability are critical for seamless operation. Real-time data processing requires innovative solutions such as edge computing and machine learning algorithms, ensuring low-latency, high-accuracy data interpretation while preserving the flexibility of sensor arrays. Finally, ensuring long-term stability and environmental adaptability demands new materials and protective coatings to withstand harsh conditions. Ongoing research and development are crucial to overcoming these challenges, ensuring that flexible sensor arrays meet the needs of diverse applications while remaining cost-effective and reliable.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.