{"title":"A MEMS Pirani Vacuum Gauge Based on Porous Silicon.","authors":"Yuzhe Lin, Zichao Zhang, Jifang Tao, Lianggong Wen","doi":"10.3390/mi16030296","DOIUrl":null,"url":null,"abstract":"<p><p>Vacuum gauges based on Micro-Electro-Mechanical System (MEMS) technology have the advantages of small size, high reliability, and low cost, so they are widely used in semiconductor, chemical, laboratory, and aerospace. In this paper, a high-reliability MEMS Pirani vacuum gauge based on a porous silicon platform is designed, fabricated, and characterized. The repeatability within 4~10<sup>5</sup> Pa has been tested. The porous silicon acting as a support material achieved a porosity of 68% and a thermal conductivity of 3.5 W/(m·K), and the surface morphology of the porous silicon is smooth. The proposed MEMS Pirani vacuum gauge containing no suspended thin-film structures has good mechanical stability and is unaffected by mechanical shock and vibration in operation.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946229/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030296","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Vacuum gauges based on Micro-Electro-Mechanical System (MEMS) technology have the advantages of small size, high reliability, and low cost, so they are widely used in semiconductor, chemical, laboratory, and aerospace. In this paper, a high-reliability MEMS Pirani vacuum gauge based on a porous silicon platform is designed, fabricated, and characterized. The repeatability within 4~105 Pa has been tested. The porous silicon acting as a support material achieved a porosity of 68% and a thermal conductivity of 3.5 W/(m·K), and the surface morphology of the porous silicon is smooth. The proposed MEMS Pirani vacuum gauge containing no suspended thin-film structures has good mechanical stability and is unaffected by mechanical shock and vibration in operation.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.