Hao Sun, Junzhong Shen, Changwu Zhang, Hengzhu Liu
{"title":"A Hybrid Scale-Up and Scale-Out Approach for Performance and Energy Efficiency Optimization in Systolic Array Accelerators.","authors":"Hao Sun, Junzhong Shen, Changwu Zhang, Hengzhu Liu","doi":"10.3390/mi16030336","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development of deep neural networks (DNNs), such as convolutional neural networks and transformer-based large language models, has significantly advanced AI applications. However, these advances have introduced substantial computational and data demands, presenting challenges for the development of systolic array accelerators, which excel in tensor operations. Systolic array accelerators are typically developed using two approaches: scale-up, which increases the size of a single array, and scale-out, which involves multiple parallel arrays of fixed size. Scale-up achieves high performance in large-scale matrix multiplications, while scale-out offers better energy efficiency for lower-dimensional matrix multiplications. However, neither approach can simultaneously maintain both high performance and high energy efficiency across the full spectrum of DNN tasks. In this work, we propose a hybrid approach that integrates scale-up and scale-out techniques. We use mapping space exploration in a multi-tenant application environment to assign DNN operations to specific systolic array modules, thereby optimizing performance and energy efficiency. Experiments show that our proposed hybrid systolic array accelerator reduces energy consumption by up to 8% on average and improves throughput by up to 57% on average, compared to TPUv3 across various DNN models.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16030336","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of deep neural networks (DNNs), such as convolutional neural networks and transformer-based large language models, has significantly advanced AI applications. However, these advances have introduced substantial computational and data demands, presenting challenges for the development of systolic array accelerators, which excel in tensor operations. Systolic array accelerators are typically developed using two approaches: scale-up, which increases the size of a single array, and scale-out, which involves multiple parallel arrays of fixed size. Scale-up achieves high performance in large-scale matrix multiplications, while scale-out offers better energy efficiency for lower-dimensional matrix multiplications. However, neither approach can simultaneously maintain both high performance and high energy efficiency across the full spectrum of DNN tasks. In this work, we propose a hybrid approach that integrates scale-up and scale-out techniques. We use mapping space exploration in a multi-tenant application environment to assign DNN operations to specific systolic array modules, thereby optimizing performance and energy efficiency. Experiments show that our proposed hybrid systolic array accelerator reduces energy consumption by up to 8% on average and improves throughput by up to 57% on average, compared to TPUv3 across various DNN models.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.