Guoyu Li, Zhenfu Chen, Qiongfang Wu, Dan Wu, Qiuwang Tao, Pinyu Zou, Yizhi Liu
{"title":"Study and Simulation Analysis of Microwave Heating Performance of Magnetite Concrete Based on Random Aggregate Modeling.","authors":"Guoyu Li, Zhenfu Chen, Qiongfang Wu, Dan Wu, Qiuwang Tao, Pinyu Zou, Yizhi Liu","doi":"10.3390/ma18061333","DOIUrl":null,"url":null,"abstract":"<p><p>Radiation-shielding concrete, widely used in protective structures because of its effective shielding properties, employs magnetite aggregates to achieve higher compressive strength than conventional concrete. However, prolonged exposure to high temperatures leads to mechanical degradation. This study investigates the thermal evolution of magnetite concrete under microwave heating across varying temperatures (38-800 °C). A microwave oven was utilized for heating, and COMSOL Multiphysics was employed to establish an electromagnetic-thermal-mechanical coupled model, analyzing surface characteristics, temperature distribution, stress-strain behavior, and residual compressive strength. Results indicate that internal temperatures exceed surface temperatures during microwave heating, with a maximum temperature difference surpassing 150 °C at 800 °C. Compressive stresses predominantly arise in the mortar, while tensile stresses concentrate in aggregates and the interface transition zone, causing stress concentration. Mortar exhibits greater deformation than aggregates as temperatures increase. Simulated and experimental residual compressive strengths show strong agreement, with a maximum deviation of 7.58%. The most rapid mechanical deterioration occurs at 450-600 °C, marked by a residual compressive strength decline of 0.07 MPa/°C and the formation of penetrating cracks.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943865/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061333","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation-shielding concrete, widely used in protective structures because of its effective shielding properties, employs magnetite aggregates to achieve higher compressive strength than conventional concrete. However, prolonged exposure to high temperatures leads to mechanical degradation. This study investigates the thermal evolution of magnetite concrete under microwave heating across varying temperatures (38-800 °C). A microwave oven was utilized for heating, and COMSOL Multiphysics was employed to establish an electromagnetic-thermal-mechanical coupled model, analyzing surface characteristics, temperature distribution, stress-strain behavior, and residual compressive strength. Results indicate that internal temperatures exceed surface temperatures during microwave heating, with a maximum temperature difference surpassing 150 °C at 800 °C. Compressive stresses predominantly arise in the mortar, while tensile stresses concentrate in aggregates and the interface transition zone, causing stress concentration. Mortar exhibits greater deformation than aggregates as temperatures increase. Simulated and experimental residual compressive strengths show strong agreement, with a maximum deviation of 7.58%. The most rapid mechanical deterioration occurs at 450-600 °C, marked by a residual compressive strength decline of 0.07 MPa/°C and the formation of penetrating cracks.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.