Utilization of a PFA-GGBS-Based Precursor in Geopolymer Concrete Production as a Sustainable Substitute for Conventional Concrete.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-03-16 DOI:10.3390/ma18061309
Jonathan Oti, Blessing O Adeleke, Lito R Casabuena, John M Kinuthia, Samuel Sule
{"title":"Utilization of a PFA-GGBS-Based Precursor in Geopolymer Concrete Production as a Sustainable Substitute for Conventional Concrete.","authors":"Jonathan Oti, Blessing O Adeleke, Lito R Casabuena, John M Kinuthia, Samuel Sule","doi":"10.3390/ma18061309","DOIUrl":null,"url":null,"abstract":"<p><p>Awareness of environmental sustainability is driving the shift from conventional Portland cement, a major contributor to carbon dioxide emissions, to more sustainable alternatives. This study focuses on developing a geopolymer concrete by optimizing geopolymer concrete mixtures with various ratios of Ground Granulated Blast Furnace Slag (GGBS) and pulverized fly ash (PFA) as precursors, aiming to find a mix that maximizes strength while minimizing environmental impacts. The precursor was activated using a laboratory-synthesized silica fume (SF)-derived sodium silicate solution in combination with NaOH at a molarity of 10M. This study aims to find the optimal geopolymer concrete mix with a 0.55 water-to-binder ratio, a 0.40 alkali-to-precursor ratio, and a 1:1 sodium silicate to sodium hydroxide ratio. Ordinary Portland cement was used as the control mix binder (C), while the geopolymer mixes included varying GGBS-PFA compositions [CL0 (50% GGBS-50% PFA), CL1 (60% GGBS-40% PFA), CL2 (70% GGBS-30% PFA), CL3 (80% GGBS-20% PFA), and CL4 (90% GGBS-10% PFA)]. The engineering performance of the mixtures was assessed using slump, unconfined compressive strength, split tensile, and flexural strength tests in accordance with their relevant standards. Observations showed that GPC specimens exhibited similar or slightly higher strength values than conventional concrete using PC. In addition to strength, geopolymers have a smaller environmental footprint, consuming less energy and reducing greenhouse gas emissions. These qualities make geopolymer concrete a sustainable construction option that aligns with global efforts to reduce carbon emissions and conserve resources.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943638/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061309","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Awareness of environmental sustainability is driving the shift from conventional Portland cement, a major contributor to carbon dioxide emissions, to more sustainable alternatives. This study focuses on developing a geopolymer concrete by optimizing geopolymer concrete mixtures with various ratios of Ground Granulated Blast Furnace Slag (GGBS) and pulverized fly ash (PFA) as precursors, aiming to find a mix that maximizes strength while minimizing environmental impacts. The precursor was activated using a laboratory-synthesized silica fume (SF)-derived sodium silicate solution in combination with NaOH at a molarity of 10M. This study aims to find the optimal geopolymer concrete mix with a 0.55 water-to-binder ratio, a 0.40 alkali-to-precursor ratio, and a 1:1 sodium silicate to sodium hydroxide ratio. Ordinary Portland cement was used as the control mix binder (C), while the geopolymer mixes included varying GGBS-PFA compositions [CL0 (50% GGBS-50% PFA), CL1 (60% GGBS-40% PFA), CL2 (70% GGBS-30% PFA), CL3 (80% GGBS-20% PFA), and CL4 (90% GGBS-10% PFA)]. The engineering performance of the mixtures was assessed using slump, unconfined compressive strength, split tensile, and flexural strength tests in accordance with their relevant standards. Observations showed that GPC specimens exhibited similar or slightly higher strength values than conventional concrete using PC. In addition to strength, geopolymers have a smaller environmental footprint, consuming less energy and reducing greenhouse gas emissions. These qualities make geopolymer concrete a sustainable construction option that aligns with global efforts to reduce carbon emissions and conserve resources.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信