Agata Kowalska, Mateusz Kaczmarski, Konrad Czerski, Rakesh Dubey, Gokul Das Haridas, Mathieu Valat, Natalia Targosz-Ślęczka, Paweł Figiel, Justyna Słowik, Jolanta Baranowska
{"title":"Electron Screening in Deuteron-Deuteron Reactions on a Zr Target with Oxygen and Carbon Contamination.","authors":"Agata Kowalska, Mateusz Kaczmarski, Konrad Czerski, Rakesh Dubey, Gokul Das Haridas, Mathieu Valat, Natalia Targosz-Ślęczka, Paweł Figiel, Justyna Słowik, Jolanta Baranowska","doi":"10.3390/ma18061331","DOIUrl":null,"url":null,"abstract":"<p><p>The electron screening effect is responsible for a significant increase in the nuclear reaction rates in metals at very low energies. This is dependent on the local crystal structure of the metallic target and the occurrence of defects or additional elemental impurities in the crystal. Here, we studied the deuteron-deuteron fusion reactions on zirconium targets previously implanted with carbon and oxygen ions. The <sup>2</sup>H(d,p)<sup>3</sup>H reaction yield was measured at two deuteron energies, 8 and 20 keV, in order to determine the strength of the electron screening effect and its dependence on the density of the implanted impurities. We found that carbon implantation strongly reduced the experimentally determined screening energy, while oxygen implantation had the opposite effect. These results are especially important for the application of nuclear fusion in metallic environments at very low energies.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11943714/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061331","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The electron screening effect is responsible for a significant increase in the nuclear reaction rates in metals at very low energies. This is dependent on the local crystal structure of the metallic target and the occurrence of defects or additional elemental impurities in the crystal. Here, we studied the deuteron-deuteron fusion reactions on zirconium targets previously implanted with carbon and oxygen ions. The 2H(d,p)3H reaction yield was measured at two deuteron energies, 8 and 20 keV, in order to determine the strength of the electron screening effect and its dependence on the density of the implanted impurities. We found that carbon implantation strongly reduced the experimentally determined screening energy, while oxygen implantation had the opposite effect. These results are especially important for the application of nuclear fusion in metallic environments at very low energies.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.