Study on the Mechanical and Mesoscopic Properties of Rockfill Under Various Confining Pressures.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-03-17 DOI:10.3390/ma18061316
Bin Ou, Haoquan Chi, Zixuan Wang, Haoyu Qiu, Jiahao Li, Yanming Feng, Shuyan Fu
{"title":"Study on the Mechanical and Mesoscopic Properties of Rockfill Under Various Confining Pressures.","authors":"Bin Ou, Haoquan Chi, Zixuan Wang, Haoyu Qiu, Jiahao Li, Yanming Feng, Shuyan Fu","doi":"10.3390/ma18061316","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the mechanical response characteristics of damming rockfill materials under different confining pressure conditions, this study integrates laboratory triaxial compression tests and PFC<sup>2D</sup> numerical simulations to systematically analyze their deformation evolution and failure mechanisms from both macroscopic and microscopic perspectives. Laboratory triaxial test results demonstrate that as the confining pressure increases, the peak deviatoric stress rises significantly, with the shear strength of specimens increasing from 769.43 kPa to 2140.98 kPa. Under low confining pressure, rockfill exhibits pronounced dilative behavior, whereas at high confining pressure, it transitions to contractive behavior. Additionally, particle breakage intensifies with increasing confinement, with the breakage rate rising from 4.25% to 8.33%. This particle fragmentation alters the granular skeleton structure, thereby affecting the overall mechanical properties and leading to a reduction in shear strength. Numerical simulations further reveal the micromechanical mechanisms governing rockfill behavior. The simulation results show a shear strength increase from 572.39 kPa to 2059.26 kPa, exhibiting a trend consistent with experimental findings. The shear failure mode manifests as a characteristic \"X-shaped\" shear band distribution, while at high confining pressures, shear fracture propagation is effectively inhibited, enhancing the overall structural stability. Furthermore, increasing confining pressure promotes denser interparticle contacts, with contact numbers increasing from 16,140 to 18,932 and the maximum contact force rising from 12.19 kN to 59.83 kN. The quantity and frequency of both strong and weak force chains also increase significantly, further influencing the mechanical response of the material. These findings provide deeper insights into the mechanical behavior of rockfill materials under varying confining pressures and offer theoretical guidance and engineering references for dam stability assessment and construction optimization.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061316","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the mechanical response characteristics of damming rockfill materials under different confining pressure conditions, this study integrates laboratory triaxial compression tests and PFC2D numerical simulations to systematically analyze their deformation evolution and failure mechanisms from both macroscopic and microscopic perspectives. Laboratory triaxial test results demonstrate that as the confining pressure increases, the peak deviatoric stress rises significantly, with the shear strength of specimens increasing from 769.43 kPa to 2140.98 kPa. Under low confining pressure, rockfill exhibits pronounced dilative behavior, whereas at high confining pressure, it transitions to contractive behavior. Additionally, particle breakage intensifies with increasing confinement, with the breakage rate rising from 4.25% to 8.33%. This particle fragmentation alters the granular skeleton structure, thereby affecting the overall mechanical properties and leading to a reduction in shear strength. Numerical simulations further reveal the micromechanical mechanisms governing rockfill behavior. The simulation results show a shear strength increase from 572.39 kPa to 2059.26 kPa, exhibiting a trend consistent with experimental findings. The shear failure mode manifests as a characteristic "X-shaped" shear band distribution, while at high confining pressures, shear fracture propagation is effectively inhibited, enhancing the overall structural stability. Furthermore, increasing confining pressure promotes denser interparticle contacts, with contact numbers increasing from 16,140 to 18,932 and the maximum contact force rising from 12.19 kN to 59.83 kN. The quantity and frequency of both strong and weak force chains also increase significantly, further influencing the mechanical response of the material. These findings provide deeper insights into the mechanical behavior of rockfill materials under varying confining pressures and offer theoretical guidance and engineering references for dam stability assessment and construction optimization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信