{"title":"Preparation and Performance Optimization of Lead-Zinc Tailing Sintered Bricks.","authors":"Dongliang He, Yanhui Cheng, Rui Li, Hang Lin","doi":"10.3390/ma18061381","DOIUrl":null,"url":null,"abstract":"<p><p>Lead-zinc tailings are waste materials generated from mineral processing and smelting, and their long-term accumulation poses potential threats to the environment and soil. To achieve resource recycling and sustainable development, this study used lead-zinc tailings and clay as raw materials and glass powder as a modifier to prepare modified lead-zinc tailing sintered bricks. Through full-factor experiments and single-factor experiments, the effects of the material proportions, the sintering temperature, and the holding time on the properties of the sintered bricks were investigated. The results show that the addition of glass powder significantly enhanced the compressive strength of the sintered bricks, reduced their water absorption rate, and improved their volume shrinkage rate. The optimal preparation conditions were as follows: 9% glass powder content, 90% lead-zinc tailings content, a sintering temperature of 1060 °C, and a holding time of 60 min. The resulting sintered bricks met the MU30-strength-grade requirements of the national standard for ordinary sintered bricks (GB/T5101-2017). The sintering temperature has a significant impact on brick performance; the compressive strength first increases, and then decreases, the water absorption rate continues to decrease, and volume change shifts from expansion to contraction. The influence of holding time was relatively weaker, but as the holding time increased, the compressive strength and the water absorption rate of the sintered bricks gradually stabilized. XRD and SEM analyses indicated that the minerals in the lead-zinc tailings decomposed and recrystallized during the sintering process. The liquid phase melt from the glass powder filled the pores and enhanced skeletal strength, thereby improving the microstructure and properties of the sintered bricks. The research findings provide a theoretical basis and practical guidance for the efficient utilization and building material application of lead-zinc tailings.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18061381","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lead-zinc tailings are waste materials generated from mineral processing and smelting, and their long-term accumulation poses potential threats to the environment and soil. To achieve resource recycling and sustainable development, this study used lead-zinc tailings and clay as raw materials and glass powder as a modifier to prepare modified lead-zinc tailing sintered bricks. Through full-factor experiments and single-factor experiments, the effects of the material proportions, the sintering temperature, and the holding time on the properties of the sintered bricks were investigated. The results show that the addition of glass powder significantly enhanced the compressive strength of the sintered bricks, reduced their water absorption rate, and improved their volume shrinkage rate. The optimal preparation conditions were as follows: 9% glass powder content, 90% lead-zinc tailings content, a sintering temperature of 1060 °C, and a holding time of 60 min. The resulting sintered bricks met the MU30-strength-grade requirements of the national standard for ordinary sintered bricks (GB/T5101-2017). The sintering temperature has a significant impact on brick performance; the compressive strength first increases, and then decreases, the water absorption rate continues to decrease, and volume change shifts from expansion to contraction. The influence of holding time was relatively weaker, but as the holding time increased, the compressive strength and the water absorption rate of the sintered bricks gradually stabilized. XRD and SEM analyses indicated that the minerals in the lead-zinc tailings decomposed and recrystallized during the sintering process. The liquid phase melt from the glass powder filled the pores and enhanced skeletal strength, thereby improving the microstructure and properties of the sintered bricks. The research findings provide a theoretical basis and practical guidance for the efficient utilization and building material application of lead-zinc tailings.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.